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Abstract

We present two valuation models which we use to account for the annual data on price
per share and dividends per share for the CRSP Value-Weighted Index from 1929 to
2023. We show that it is a simple matter to account for these data based purely on a
model of variation over time in the expected ratio of dividends per share to aggregate
consumption under two conditions. First, investors must receive news shocks regarding
the expected ratio of dividends per share to aggregate consumption in the long run.
Second, the discount rate used to evaluate the impact of this news on the current
price per share must be low. We use the approach of Campbell and Shiller (1987) and
Campbell and Shiller (1988) to argue that the cash flow news in our model is not a
stand-in for changes in expected returns: with our model parameters, returns are not
predictable and price dividend spreads and ratios predict dividend growth at model-
implied magnitudes. We illustrate which parameter choices account for differences
between our results and prior findings in the literature. We conclude that the answer
to Shiller’s (1981) question “Do stock prices move too much to be justified by subsequent
movements in dividends?” is “not necessarily.”
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1 Introduction

Shiller (1981) famously asked, “Do stock prices move too much to be justified by subsequent

movements in dividends?” An important body of work in finance argues that the answer

to this question is “yes.” See, for example, Leroy and Porter (1981), Campbell and Shiller

(1987), Campbell and Shiller (1988), Cochrane (2011), and Shiller (2014).

In this paper, we call into question the conclusions drawn from this prior work. In

particular, we present two simple valuation models which we use to account for the annual

data on price per share and dividends per share for the CRSP Value-Weighted Index from

1929 to 2023. These two valuation models are based on two different models of the dynamics

of agents’ expectations of future dividends per share valued at constant discount rates. We use

these two models to show that it is a straightforward exercise to account for these aggregate

stock market data based purely on a model of variation in the expected ratio of dividends

per share to aggregate consumption over time under two conditions:

1. First, investors must receive news shocks regarding the expected ratio of dividends per

share to aggregate consumption in the long run.

2. Second, the discount rate that determines the impact of this news on the current price

per share must be low.

In contrast, we find that if these conditions are not satisfied, in particular the second

condition regarding discounting, then the standard results pointing to stock prices being

excessively volatile hold.

Thus, we conclude that the answer to the question of whether stock prices are excessively

volatile depends on how valuation models are parameterized. As a result, we do not see

our analysis as the final word on the question of what drives stock market volatility. More

research is needed to discern what are the appropriate parameters to use in valuing the

stock market. Instead, we see our paper as breathing new life into the old hypothesis that

changing expectations of future dividends play an important and perhaps dominant role in

driving aggregate stock market volatility.

1.1 A Decomposition of Asset Prices

We make use of the framework laid out in Campbell and Shiller (1987) to uncover the drivers

of stock price volatility.

We study the following identity decomposing any asset price pt into two components:

pt = p⋆t + ϕt (1)
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where

p⋆t ≡
∞∑
k=1

βkEtdt+k (2)

and β < 1.

In this decomposition, p⋆t is the expected present value of dividends discounted at a

constant rate β. We label p⋆t the “fundamental” component of price.1 The component ϕt is

simply the difference between the observed price pt and the fundamental component p⋆t . We

label ϕt the “residual” component of price.

In this paper, we use this decomposition of price into a fundamental and a residual

component to ask whether one can account for observed fluctuations in prices {pt}Tt=0 based

on a model of fluctuations in the fundamental component of price {p⋆t}Tt=0 with a constant

residual term ϕt = ϕ̄. The alternative hypothesis is that variation over time in the residual

term {ϕt}Tt=0 is required to account for the data on prices. In what follows, we refer to the

hypothesis that one can account for fluctuations in observed prices pt based on a model of

fluctuations in the fundamental price p⋆t with constant ϕt = ϕ̄ as the Dividends Hypothesis.

We label the alternative hypothesis that variation over time in the residual term ϕt is required

to account for observed prices the Excess Volatility Hypothesis.

A closely related framing of the question of what drives fluctuations in asset prices asks

whether periods in which prices are high relative to an appropriate measure of dividends

tend to followed by higher than average dividend growth, or by lower than average returns.

We now state a proposition that links the dynamics of our residual component of price ϕt to

expected returns. This proposition illustrates that our framing of the question of what drives

fluctuations in the asset price pt is closely related to the common framing of that question

that emphasizes changes in expected returns as a potential driver of fluctuations in price.

Proposition 1: Given equations (1) and (2) and a parameter β, we have

βEtϕt+1 − ϕt = βEt [pt+1 + dt+1]− pt (3)

We refer to the expression on the right side of this equation as a quasi-return.

For a security whose price is always positive, this can be written as

βEt
[
ϕt+1

pt
− ϕt
pt

]
+ (β − 1)

ϕt
pt

= βEtRt+1 − 1 (4)

where returns are given by

Rt+1 ≡
pt+1 + dt+1

pt
.

1We will assume that β is small enough that the infinite sum in equation 2 is defined.

2



Equation (4) establishes a direct link between the dynamics of the residual component of

price ϕt and the dynamics of expected returns. The proof of this proposition follows directly

from the definition of the fundamental price and the Law of Iterated Expectations.2

To understand what we do in this paper, consider two versions of the Dividends Hypoth-

esis.

First, suppose ϕt is constant at ϕ̄ and equal to zero. In this case, the observed price will

always equal the fundamental price, and, from equation (4), the expected return to buying

the asset EtRt+1 will be constant and equal to 1/β and the expected quasi-return is zero.

This is the case considered in Campbell and Shiller (1987) and Campbell and Shiller (1988)

and the subsequent literature when evaluating the Dividends Hypothesis. In this case, the

observation that realized returns on equity have been high suggests that a relatively low

value for the parameter β should be used in modeling the fundamental price. We confirm

in Section 9 of this paper the prior finding that the Dividends Hypothesis is rejected when

stated in this form with ϕ̄ = 0 and 1/β set to be consistent with the observed high returns

on equity.

Second, suppose ϕt is constant at some negative value ϕ̄. This is the baseline case that

we consider. Then Proposition 1 indicates that the expected quasi-return is (β − 1)ϕ̄

EtRt+1 =
1

β

(
1 +

(β − 1)ϕ̄

pt

)
. (5)

In this scenario, the residual component ϕ̄ depresses observed prices relative to the funda-

mental price by a constant additive amount, which translates into a model-implied expected

return for equity in excess of 1/β. Thus, in this case, one can entertain the possibility that

the β that enters into the calculation of fundamental price is high. With a high value of β

news about dividends in the far future can have a large impact on current price. We use our

two models of the dynamics of dividends to show that the Dividends Hypothesis fits the data

very well when stated in this looser form.

2Start with the observation that

βp⋆t+1 − p⋆t =

∞∑
k=2

βk [Et+1dt+k − Etdt+k]− βEtdt+1

Thus, by the Law of Iterated Expectations

βEtp
⋆
t+1 − p⋆t = −βEtdt+1

Equation (1) then implies that

βEtpt+1 − pt = βEtϕt+1 − ϕt − βEtdt+1

which gives us equation (3).
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1.2 Data

The data we use for our analysis is annual data from 1929 through 2023 on price per share for

the CRSP Value-Weighted Total Market Index, which we denote by Pt and the corresponding

measure of dividends per share for this index Dt. We scale these measures by annual data on

Personal Consumption Expenditures (PCE) from the National Income and Product Accounts.

Thus, in our applications below, pt represents the ratio of price per share to PCE, with its

value normalized to one in 1929. The variable dt represents the ratio of dividends per share

to PCE with this variable normalized so that pt/dt corresponds to the ratio of price per share

to dividends per share at every date.

We discuss in Section 4 that our choice of consumption as a variable with which to scale

dividends and price is motivated by an assumption that the price of a perpetual claim to

aggregate consumption relative to current consumption is close to constant over time. This is

equivalent to assuming in a Gordon growth model for aggregate consumption that movements

in the discount rate relevant for a claim to aggregate consumption and movements in the

expected growth rate of aggregate consumption offset, leaving the price-dividend ratio for

such a claim constant over time. In this way, we do not need to assume that real interest

rates and real growth rates are constant over time.

As we discuss in Section 4, for our baseline calibration we set β/(1 − β) = 80, which is

consistent with estimates of this price-dividend ratio for a claim to aggregate consumption

found by Lustig, Van Nieuwerburgh, and Verdelhan (2013). In Section 9 we show how our

results vary with alternative values of β.

1.3 Return and Dividend Forecasting Regressions

To evaluate whether fluctuations in stock prices are driven by fluctuations in the residual

component ϕt rather than fluctuations in the fundamental price p⋆t , we develop two parsi-

monious models of the dynamics of dividends that we use to construct two models of the

dynamics of the fundamental component of price p⋆t . In the first of these two models, we

focus on the dynamics of the level of dividends as in Campbell and Shiller (1987). We refer

to this first model as our linear model of dividends. In the second, we focus on the dynamics

of the log of dividends as in Campbell and Shiller (1988). We refer to this second model as

our log-linear model of dividends.

In both of these models, we assume that dividends (or log dividends) follow ARIMA

processes integrated of order one and thus have a Beveridge and Nelson (1981) decomposition

into an unobserved trend component xt (or log xt) and a transitory component dt − xt (or

log dt− log xt). By the definition of a Beveridge-Nelson decomposition, this trend component
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corresponds to the expected value of dividends relative to consumption in the long run

xt = lim
k→∞

Etdt+k.

Thus, by construction, this trend component of dividends xt is a martingale.

The question we seek to address is whether it is movements in this unobserved trend

component of dividends xt or fluctuations in the unobserved residual component of price ϕt

that are driving price pt. The observation that xt is a martingale while ϕt need not be is the

central implication of the model which we use in our testing of the Dividends Hypothesis.

To that end, with each of our models of the dynamics of dividends, we develop a suite of

forecasting regressions for quasi-returns (or log returns), dividend growth, and price growth

to evaluate the fit of our model to the data under the Dividends Hypothesis relative to the

alternative Excess Volatility Hypothesis. We introduce these forecasting regressions for the

linear model in Section 2.1 and for the log-linear model in Section 7.2.

From our Proposition 1, one can interpret the first of our forecasting regressions with

the linear model as analogous to the Campbell and Shiller (1988) regressions widely used in

the prior literature. To see this connection, consider the implications of equation (3) from

Proposition 1. We see from that equation that, given a choice of the parameter β, under the

Dividends Hypothesis, this quasi-return should be constant over time. Thus, the quasi-return

should not be predictable with any variable known at time t. Evidence that the quasi-return

were predictable would favor the Excess Volatility Hypothesis.

For our first forecasting regression in our linear model we ask whether quasi returns in the

data can be forecast using a valuation statistic constructed from data on price and dividends

and shown to be stationary in Campbell and Shiller (1987) given by

pTt = pt −
β

1− β
dt

This statistic is the analog in our linear model of a price-dividend ratio in a log-linear model.

We discuss the pitfalls of using non-stationary valuation metrics to evaluate the Dividends

Hypothesis in Section D.

The flip side of the prediction of the Dividends Hypothesis that the valuation statistic pTt

should not forecast future quasi-returns is that pTt should forecast future growth in dividends,

with coefficients consistent with the specific model of the transitory component of dividends

being used. At the same time, proxies for the trend component xt should be unforecastable.

Results from all these regressions with our baseline parameters are reported in Section 5.

One appealing property of our linear model is that it is fully tractable without approx-

imations. With our log-linear model, we must use first-order approximations to the model
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solution to use the results in Proposition 1. We follow the approximations in Campbell and

Shiller (1988). The central insight we use in constructing these forecasting regressions is that

in a model with ϕt = ϕ̄ < 0, the appropriate measure of the log price-dividend ratio to use as

the independent variable in evaluating the Dividends Hypothesis is log(p⋆t )− log(dt). This is

because, by definition, the expected return on a claim to the fundamental price is constant

over time. All variation in the log ratio of the fundamental price to dividends should be

driven by changing expectations of future dividend growth.3

Unfortunately, the log ratio log(p⋆t ) − log(dt) is not directly observed in data. Given

a choice of the parameter ϕ̄, however, and taking the Dividends Hypothesis as the null

hypothesis, this valuation statistic can be estimated as log(pt − ϕ̄) − log(dt). We use this

adjusted log price-dividend ratio in our forecasting regressions with this second, log-linear

model. It is this adjustment that leads us to find different results to the prior literature

(which imposes ϕ̄ = 0) when we set ϕ̄ < 0. In this case, both log-return and dividend growth

forecasting regressions results are consistent with the Dividends Hypothesis and not with

the Excess Volatility Hypothesis. Regression results in the second model with our baseline

parameters are reported in Section 7.3.

1.4 Risk Adjustments to Price

We see our assumption that an additive constant risk adjustment ϕ̄ is present in stock prices as

a key difference between our analysis and that in Campbell and Shiller (1987) and Campbell

and Shiller (1988) and the literature that follows these papers. This raises the question then

of what is the theoretical foundation for such a constant additive risk adjustment between

observed prices pt and fundamental prices p⋆t ?

In Section 4 and Appendix C we show that, in the context of our linear model, a constant

additive risk adjustment between observed price pt and fundamental price p⋆t arises naturally.

Specifically, when the pricing kernel Mt,t+1 and consumption growth Ct+1/Ct are both con-

ditionally lognormal while innovations to dt are conditionally normal, then an application of

Stein’s Lemma delivers this additive risk adjustment. In contrast, if innovations to dividends

are also lognormal, as in our second model of the dynamics of dividends, the risk adjustment

between price and fundamental price is multiplicative rather than additive. Thus, we see the

theoretical foundations for such an additive risk adjustment as a matter for future research.

We return to a discuss of this question in our conclusion.

3Note from Proposition 1 that with ϕ̄ < 0 there is time variation in conventionally measured expected
returns due to movements in the ratio ϕ̄/pt. But these movements in expected returns do not contribute to
movements in price pt.
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1.5 Accounting for Observed Stock Prices

We take from our regression results the conclusion that with a high value of β and a corre-

spondingly low value of ϕ̄, the data on stock prices and dividends are compatible with the

Dividends Hypothesis. Under this hypothesis, we can use each of our two models of the

dynamics of dividends to uncover the dynamics year-by-year of the unobserved trend com-

ponent of dividends (xt or log xt) needed to reconcile the model with observed stock prices

and dividends.

We present results from our linear model in Section 6. In Figure 3, we see that with a high

value of β, only modest variation over time in the long-run trend component of dividends xt

is required to account for observed stock prices. In Figure 4, we see that these fluctuations

in the trend component xt account for the large majority of observed fluctuations in stock

prices. In Figure 5, we see that the expected returns implied by our linear model with ϕ̄ < 0

do vary modestly over time. This variation in expected returns, however, does not contribute

to volatility in prices pt since this model has ϕt = ϕ̄ by construction.

We present results from our log-linear model in Section 8. In Figure 6, we see again that

with high β and low ϕ̄, only modest variation in the long-run trend in dividends log(xt) is

required to account for observed stock prices.

We note that our second, log-linear model of dividend dynamics nests a simple long run

risks model in which the expected trend growth rate of log dividends is subject to persistent

shocks. In Figure 7 we show the path of the expected trend growth rate of log dividends

needed to account for observed prices. One striking feature of that figure is that the model-

implied expected trend growth rate of dividends needed to account for the stock market boom

of 2000 is in line with the ex-post realized growth of dividends over the next 20 years. Thus,

in hindsight, it is not clear if the exuberance of the 2000 stock market boom was irrational.

1.6 Related Literature

To account for observed stock prices under the Dividends Hypothesis, we must have that the

ratio of dividends per share relative to aggregate consumption is not stationary. A reader who

is not familiar with the construction of measures of price per share and dividends per share

for equity indices such as the CRSP Value-Weighted Index might wonder why one would have

significant uncertainty about either the level or the growth rate of the ratio of dividends per

share to aggregate consumption in the long run. We argue that much of the uncertainty about

the long-run values of these two ratios is not driven by economic fundamentals but is instead

driven by what are called corporate actions that impact the number of shares outstanding

for firms included in the index. These corporate actions include entry of new firms into
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the index, exit of firms from the index, mergers and acquisitions, new equity issuances and

repurchases of shares by incumbent firms in the index.

As noted by Dichev (2006), Boudoukh et al. (2007), Larrain and Yogo (2008), Gârleanu

and Panageas (2023), and Davydiuk et al. (2023), among others, these corporate actions

generate large differences in the dynamics of dividends per share relative to aggregate div-

idends, in aggregate dividends relative to total cash flows to owners of equity, and in the

dynamics of price per share relative to aggregate equity market capitalization as shown in

Figure 2. In particular, it appears from Figure 2 that a large share of the movements in the

ratio of dividends per share to aggregate consumption that we see in the data over the past

century has been driven by the dynamics of corporate actions. Thus, a large portion of the

uncertainty about the long-run ratio or growth rate of dividends per share to aggregate con-

sumption, which is so important for the volatility of the ratio of price per share to aggregate

consumption, likely reflects uncertainty about future corporate actions.

The impact of corporate actions on measures of stock market value and dividends extends

to the observed ratio of price per share to dividends per share, which is typically used as

a measure of the price-dividend ratio in empirical asset pricing. As argued by Miller and

Modigliani (1961), total cash flows to equity holders are likely fundamental to valuing equity.

They note that firms can use corporate actions to alter the dynamics of their dividends while

holding fixed these total cash flows to equity holders. Thus, they argue that firms can alter

the dynamics of their price-dividend ratio simply through changing their policy for paying

dividends. Larrain and Yogo (2008) and Atkeson, Heathcote, and Perri (2024) argue that

ratios of total payouts to value do not show the same trends as the ratio of price per share

to dividends per share. We infer that corporate actions have played a large role in driving

the observed dynamics of the ratio of price per share to dividends per share over the past

century.

In terms of the literature, we see Barsky and De Long (1993) as the precursor closest to

our work. That paper emphasizes the role of shocks to the dividend growth rate in the long

run in accounting for the volatility of stock prices. Bansal and Lundblad (2002) and Bansal

and Yaron (2004) also point to low-frequency movements in expected growth in dividends as

an important source of changes in the price-dividend ratio for the aggregate stock market.

We note that this type of long run risks model is nested in our second, log-linear model of

the dynamics of dividends.

Greenwald, Lettau, and Ludvigson (2023) is an important precursor to our work in that

it uses a model in which shocks to the ratio of earnings to output play a major role in

accounting for the data on the evolution of the value of the stock market over time. We

also follow them in using a valuation model to uncover the innovations needed to account for
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the data. In contrast to their work, however, we use the standard data on price per share

and dividends per share that are used in many asset pricing studies. Their work—as well as

work by Larrain and Yogo (2008) and our companion paper, Atkeson, Heathcote, and Perri

(2024)—develops valuation models using alternative data on cash flows to owners of U.S.

corporations.

We note that it is standard in the asset pricing literature to build models with sepa-

rate dynamics for dividends and aggregate consumption, and thus these models implicitly

incorporate shocks to expectations of the ratio of dividends to consumption in the long-run.

See, for example, Campbell and Cochrane (1999) and Bansal and Yaron (2004). But these

alternative models do not appear to put these shocks to long-run expectations of the ratio

of dividends per share to consumption at the center of their analysis. Given our results, it

is unclear whether the other model elements those papers emphasize are needed to account

for stock market data once one allows for news about the ratio of dividends to consumption

in the long-run.

2 A First Linear Model Specification

Our first model specification is based on the following assumptions.

Assumption 1: We assume that the observed dividend process dt is integrated of order

one (an ARIMA process). Then, as Beveridge and Nelson (1981) showed, its dynamics can

be decomposed into an unobserved trend component xt defined as the long run expected

value of dividends

xt = lim
k→∞

Etdt+k,

and a transitory component, dt− xt. By construction, the process for xt is a martingale. We

model this trend component as

xt+1 = xt + ϵx,t+1 (6)

where ϵx,t+1 should not be predictable by any variables known at t.

Note that we nest the case with dt stationary with an assumption that xt = x̄ is constant.

Assumption 2: The ARMA representation of the transitory component dt − xt can be

quite general. To keep our model simple, we will assume that it is an AR(1). Specifically, we

posit

(dt+1 − xt+1) = ρ(dt − xt) + ϵd,t+1 (7)

where ρ < 1. Note that the permanent and transitory shocks to dividends ϵx,t+1 and ϵd,t+1

may be correlated.
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Assumptions 1 and 2 deliver the following model of the dynamics of expected dividends

Etdt+k = ρkdt + (1− ρk)xt. (8)

Given these expectations, we can solve for the fundamental component of price as

p⋆t =
βρ

1− βρ
(dt − xt) +

β

1− β
xt. (9)

This expression is intuitive. If dt = xt, the fundamental value is just the present value

of receiving xt at every future date. If dt > xt, the fundamental value is boosted by the

expectation that dt will temporarily exceed xt, with the differential decaying at rate ρ.

Note that innovations to the long-run expected value of dividends xt have a larger impact

on the fundamental price than equally sized innovations to the transitory component dt−xt,

and this impact is increasing in the discount factor β. Thus, a positive innovation to ϵx,t+1

coupled with an equal size negative innovation to ϵd,t+1 will boost the fundamental price

without any contemporaneous change in dividends.

Assumptions 1, and 2 give the following model of prices under both hypotheses that we

consider:

pt = ϕt +
βρ

1− βρ
(dt − xt) +

β

1− β
xt. (10)

The corresponding expected growth in the price is given by

Etpt+1 − pt = Etϕt+1 − ϕt + ρ
βρ

1− βρ
(dt − xt). (11)

Thus, realized price growth has an unpredictable random walk component inherited from

time variation in the long-run expected value for dividends xt, and two additional components

due to (i) temporary deviations of dividends from their long run expected value (dt−xt) and
(ii) movements in ϕt which, from equation (4), correspond to time variation in the expected

rate of return. Expected price growth retains only the last two of these driving forces.

2.1 Forecasting Regressions

We now seek to test the Dividends Hypothesis, which is the hypothesis that assets are priced

as the sum of (i) the expected discounted present value of dividends given a constant discount

factor β (the fundamental price) plus (ii) a constant additive risk adjustment term ϕ̄. We

start by constructing a measure of returns between t and t+ s, rt,t+s, which we label quasi-
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returns, defined as

rt,t+s ≡
s∑

k=1

βkdt+k + βspt+s − pt. (12)

From equations (1) and (2), we have that

Etrt,t+s = βsEtϕt+s − ϕt. (13)

Thus, under the Dividends Hypothesis, expected quasi-returns over horizon s should be

constant and equal to (βs − 1)ϕ̄, and time variation in realized quasi-returns should not

be predictable. Hence, the first question we ask is whether rt,t+s can be forecast in the

data. If quasi returns can be predicted, that would provide evidence against the Dividends

Hypothesis, and specifically against the hypothesis that the residual term ϕt is constant.

Conceptually, one could use any variable known at time t in forecasting rt,t+s. Here we

consider a more limited forecasting exercise. Specifically, we define a valuation measure – a

price-dividend spread in the language of Campbell and Shiller (1987) – that eliminates the

valuation impact of the trend dividend component xt. This price-dividend spread is defined

as

pTt ≡ pt −
β

1− β
dt. (14)

Note that pTt is measurable from the data given knowledge only of the parameter β. As shown

in Campbell and Shiller (1987), this valuation metric is a stationary random variable under

the Dividends Hypothesis given a general specification of the dynamics of the transitory

component of dividends dt − xt. To see this point in our specific model, observe that, given

equation (10), we have

pTt = ϕt − Γ(dt − xt) (15)

where

Γ ≡ β

1− β
− βρ

1− βρ
. (16)

Thus, under the Dividends Hypothesis and our Assumption 1 regarding the dynamics of

dividends, this valuation metric pTt is a stationary random variable.

We evaluate the predictability of rt,t+s by p
T
t using OLS regressions of the form

rt,t+s = αr,s + γr,s p
T
t + errorr,t+s (regression 1)

and ask whether the estimated slope coefficients γ̂r,s at different horizons s equal zero as

predicted by the Dividends Hypothesis.

Note that given a value of the parameter β, the statistic rt,t+s and the valuation metric pTt
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can be constructed directly from data on price pt and dividends dt. Thus, to explore whether

quasi-returns are predictable, one does not need to specify a process for dividends.

We next go beyond this general test of the Dividends Hypothesis by exploring whether

we can reject the explicit process for dividends outlined above, according to which dividends

have a trend component xt that is a martingale, and a transitory component dt − xt that

follows an AR(1) process. Once we posit this particular model, we are effectively testing

a stricter version of the Dividends Hypothesis. The additional restriction that now comes

into play is that the fundamental component of price reflects the expected present value

of dividends when those expectations are formed by rational agents who take as given the

dividend process specified in equations (6) and (7). Given that process, the expected present

value of dividends is given by equation (9).

From that fundamental price expression, it is immediate that given values for the pa-

rameters β, ρ and ϕ, one can always infer a time series {xt} that perfectly replicates the

observed sequence for {pt}. But the stricter version of the Dividends Hypothesis asserts that

the resulting xt series is a martingale (and also that the series dt − xt is an AR(1) process).

If the series for xt that replicates the observed price history appears to be forecastable, that

would be evidence against the posited process for dividends and thus against the stricter

version of the Dividends Hypothesis. And if xt appears forecastable, then equation (9) is no

longer interpretable as the rational expectations value for the present value of dividends.

Given the pricing equation (10), expected price growth between t and t+ s is given by

Etpt+s − pt =
β

1− β
(Etxt+s − xt) +

βρ

1− βρ
[Et(dt+s − xt+s)− (dt − xt)] + Etϕt+s − ϕt

Under the Dividends Hypothesis, Etϕt+s = ϕt = ϕ̄, and given our model for dividends,

Etxt+s − xt. Thus, the Dividends Hypothesis implies the following relationship between ex-

pected price growth and expected dividend growth:

Etpt+s − pt =
βρ

1− βρ
[Etdt+s − dt] . (17)

Thus, under the Dividends Hypothesis, if investors expect price growth, it must be that

they expect proportional dividend growth. If the Dividends Hypothesis were false, then

investors could expect price growth without dividend growth if they expect ϕt to rise (i.e.

they expect high returns).

Given our AR(1) process for dividends, we can solve for expected dividend growth under
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the Dividends Hypothesis:

Etdt+s − dt = Et(dt+s − xt+s)− (dt − xt)

= (ρs − 1)(dt − xt)

= (ρs − 1)

(
−(pt − β

1−βdt − ϕ̄)

Γ

)

where the first equality follows from equation (6), the second from (7), and the third from

(10). Thus, we can estimate the parameter ρ by running regressions of the form

dt+s − dt = αd,s + γd,sp
T
t + εd,s. (regression 2)

The estimate γ̂d,s identifies (1− ρs)/Γ which, given a value for β, delivers an estimate for

the persistence parameter ρ.

Our second test of Dividends Hypothesis will be to test equation (17) by exploring whether

price growth and dividend growth (scaled by βρ/(1− βρ)) are equally predictable. Thus, we

will run a forecasting regression of the form:

pt+s − pt −
βρ

1− βρ
(dt+s − dt) = αp,s + γp,sp

T
t + εp,s (regression 3)

and check whether γ̂p,s = 0. Note that this test is equivalent to testing whether growth in the

spread pt − βρ
1−βρdt is predictable. That spread, given our pricing equation (10), is given by

ϕt+Γxt. Under the stricter version of the Dividends hypothesis, ϕt = ϕ̄ and xt is a martingale,

and thus growth in the spread pt − βρ
1−βρdt is supposed to be unpredictable. Thus, if we find,

γ̂p,s ̸= 0, that would indicate that the spread is predictable, which would be evidence against

the Dividends Hypothesis null.

If we do find parameters β and ρ such that our regression evidence is consistent with

the Dividends Hypothesis, then, given an estimate of the constant ϕ̄, we can construct the

estimates of the unobserved values of {xt}Tt=0 directly from the data on prices {pt}Tt=0 and

dividends {dt}Tt=0 using equation (10) with the restriction that ϕt = ϕ̄. In this way, we can

offer an accounting of forces driving movements in stock prices year-by-year from 1929 to

2023.

3 Our Data

The data we use for this analysis is annual data from 1929 through 2023 on price per share for

the CRSP Value-Weighted Total Market Index, which we denote by Pt and the corresponding

13
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Figure 1: Left panel: The ratio of price per share for the CRSP Value-Weighted Total Market
Index to Personal Consumption Expenditures 1929-2023. The value of this ratio in 1929 is
normalized to one. Right panel: The ratio of dividends per share for the CRSP Value-
Weighted Total Market Index to Personal Consumption Expenditures 1929-2023. This series
for dividends per share is normalized so that the ratio of the two series equals the ratio of
dividends per share to price per share at every date.

measure of dividends per share for this index Dt. We scale these measures by annual data on

Personal Consumption Expenditures (PCE) from the National Income and Product Accounts.

Thus, in our applications below, pt represents the ratio of price per share to PCE, with its

value normalized to one in 1929. The variable dt represents the ratio of dividends per share

to PCE with this variable normalized so that pt/dt corresponds to the ratio of price per share

to dividends per share at every date.

We plot these two series in the left and right panels of Figure 1. We see that pt is quite

volatile and dt has low frequency movements that we model as a process that is integrated

of order one. We discuss the construction of these data in greater detail in Appendix B.

One striking feature of the data on the ratio of dividends per share to PCE shown in

the right panel of Figure 1 is that it does not appear to be stationary. Instead, it shows

a marked downward trend since 1929. The first key assumption in our valuation models

is that investors do not have a fixed expectation of the value of this ratio in the long run.

Instead, they receive news each period that leads them to revise their expectation of the

long-run value of this ratio. We argue that uncertainty about the long-run value of this ratio

is plausible as a matter of econometrics given its historical path as shown in the figure – it

is not at all clear what long-run value the series is converging to.

There are also multiple economic reasons why the ratio of dividends per share to PCE
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might vary in the long run.

First, it may be the case that the total cash flows paid to owners of U.S. corporations

relative to consumption might vary over time. Greenwald, Lettau, and Ludvigson (2023) and

Atkeson, Heathcote, and Perri (2024) argue that this is indeed the case.

Second, the fraction of economic activity carried out in publicly-traded corporations rel-

ative to all corporations might vary over time. This is likely the case as well over the course

of the past century.

Third, the methodology used in the construction of the indices of price per share and

dividends per share implies that these measures track neither the total value of the stock

market as measured by total market capitalization of the stocks in the index nor the total

value of cash payouts to owners of these equities. Instead, the ratio of the index of price

per share to total market capitalization varies over time as a result of a large number of

actions that result in changes in the number of shares outstanding for the firms in the index.

These corporate actions include entry and exit of firms in public markets, mergers of firms,

issuance of new shares or repurchases of shares by incumbent firms, and so on. What these

corporate actions imply is that an investor who maintained a portfolio to track the CRSP

Value-Weighted Index would hold a share of the total market that varies over time. We give

further details on these points in Appendix B.

We show the variation of the ratio of the index of price per share to total market capi-

talization for the CRSP Value-Weighted Index over the period 1929-2023 in Figure 2. This

ratio represents the fraction of the total stock market held by an investor tracking the CRSP

Value-Weighted Index. In this figure, we normalized 1929 price per share so that the fraction

is equal to one in 1929.
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Figure 2: The fraction of the total market capitalization of the stocks in the CRSP Value-
Weighted Total Market Index held by an investor tracking that index, 1929-2023. The initial
value of this fraction has been normalized to one.

We see in this figure a sharp downward trend in the share of the total market held by

an index investor over this time period. An investor managing his or her portfolio to track

the CRSP Value-Weighted Index would end up holding a shrinking share of the total stock

market because he or she would not be purchasing the new shares being issued on net from

corporate actions.4 Thus, it is natural that the ratio of dividends per share to consumption

would also fall over time, as an investor tracking the index of price per share would have

claims to a shrinking share of total dividends. This figure also makes clear that part of

investors’ uncertainty regarding the long-run value of the ratio of dividends per share to

consumption is also driven by uncertainty regarding the future course of corporate actions.

We capture this uncertainty about the long-run ratio of dividends per share to PCE in

our model variable xt.

4 Choosing β, ρ, and ϕ̄

The parameter β plays an important role in our analysis. It defines the cointegrating vector

linking prices and dividends in equation (14). As we will show, the value for β also plays an

important role in determining whether or not prices appear excessively volatile.

A straightforward way to discipline the choice for β is to note that β/(1−β) corresponds

4Gârleanu and Panageas (2023) document that most of this decline in the share of the total market held
by an index investor is driven by the entry of new firms into public markets through initial public offerings.
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to the price of a claim to future aggregate consumption in units of current consumption. On

this basis, we set our baseline value to β = 80/81 to target a value for that relative price of

80, as estimated by Lustig, Van Nieuwerburgh, and Verdelhan (2013).

We now expand on these points.

We begin with the standard valuation equation for the level of the stock index before

rescaling:

Pt =
∞∑
k=1

Et [Mt,t+kDt+k] , (18)

where Mt,t+k is the nominal pricing kernel between periods t and t+ k, Pt is the stock index

and Dt is the index of dividends per share.

We work with ratios of price per share and dividends per share to PCE, using lower case

variables pt and dt to represent these ratios. We therefore rewrite this pricing equation (18)

as

pt =
∞∑
k=1

Et
[
Mt,t+k

Ct+k
Ct

dt+k

]
.

Using the result that the expectation of a product of two random variables is the product

of the expectations plus the covariance between these variables, we have

pt =
∞∑
k=1

Et
[
Mt,t+k

Ct+k
Ct

]
Etdt+k +

∞∑
k=1

Covt
(
Mt,t+k

Ct+k
Ct

, dt+k

)
. (19)

Note that the term

p
(k)
C,t ≡ Et

[
Mt,t+k

Ct+k
Ct

]
is the price at t of a claim to aggregate consumption at delivered at t+k relative to aggregate

consumption at t. We define the price at t of a claim to aggregate consumption in perpetuity

relative to the current level of aggregate consumption as

pC,t ≡
∞∑
k=1

p
(k)
C,t.

The terms

H
(k)
t ≡ Covt

(
Mt,t+k

Ct+k
Ct

, dt+k

)
(20)

constitute a risk adjustment to the price of claims to dividends due to risk associated with

fluctuations in the ratio dt.

Our choice of β and our choice of consumption as a variable with which to scale dividends

and price is motivated by an assumption that the prices of consumption claims relative to
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current consumption are constant over time, or

p
(k)
C,t = βk.

This is equivalent to assuming in a Gordon growth model for aggregate consumption that

movements in the discount rate relevant for a claim to aggregate consumption and movements

in the expected growth rate of aggregate consumption offset, leaving the price-dividend ratio

for such a claim constant over time. In this way, we do not need to assume that real interest

rates and real growth rates are constant over time.

Given that assumption, the first term in equation (19) corresponds to the fundamental

price p∗t defined in equation (2). In our baseline calibration we set the price of a perpetual

claim to consumption relative to current consumption to pC,t =
∑∞

k=1 β
k = β

1−β = 80.

For this pricing model to be consistent with the Dividends Hypothesis, we also require

that the risk adjustment terms H
(k)
t be constant over time, with

ϕ̄ =
∞∑
k=1

H(k).

In Appendix C we show that the H
(k)
t terms are indeed time invariant under the assumptions

that the pricing kernel Mt,t+1 and consumption growth Ct+1/Ct are both conditionally log-

normal while innovations to dt are conditionally normal. This configuration of shocks holds

under our Assumptions 1 and 2 if we impose that ϵd,t+1 and ϵx,t+1 are both normal. We see

this result as a start towards a micro-foundation for our assumption that ϕt is constant over

time.

To choose ϕ̄ given β, we compare our model’s implications to the data on mean quasi-

returns at different horizons. Table 1 reports mean realized quasi-returns at various horizons,

together with the standard errors for these estimates of mean quasi-returns. Observe from

equations (3) and (13) that with ϕ̄ = 0, our model would imply that expected quasi-returns

at all horizons should be zero. At a horizon of s = 1 years, mean realized quasi-returns in

the data are Ert,t+1 = 0.0101 which is within 0.86 standard errors of zero. Longer horizon

mean realized quasi-returns, however, such as for s = 5, 10, and 15, are all significantly greater

than zero. Thus, to come close to matching the data on mean realized quasi-returns at longer

horizons with a value of β = 80/81, we must choose a value of ϕ̄ that is negative. In the first

row of Table 1 we show model-implied expected quasi-returns (βs− 1)ϕ̄ with β = 80/81 and

ϕ̄ = −0.9. This parameter configuration replicates mean observed quasi-returns closely at

all horizons.
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horizon s = 1 s = 5 s = 10 s = 15
(βs − 1)ϕ̄ 0.0111 0.0542 0.1051 0.1530

mean(rt,t+s) 0.0101 0.0658 0.1096 0.1530
S.E. (0.0118) ( 0.0194) (0.0246) (0.0279)

Table 1: Realized mean and model-implied quasi-returns at horizon s with β = 80/81 and
ϕ̄ = −0.9.

Note that, in the data, the mean arithmetic realized return on equity in excess of con-

sumption growth is 1.0530, with a standard error of that mean of 0.0199. Using equation

(4), with our baseline parameters, the mean one-period ahead expected return on equity in

excess of consumption growth is 1.0360. Thus, we see our model-implied expected arithmetic

returns with these parameters as being close to mean realized returns in the data.

Given our choice of β, we estimate ρ using regression 2. Table 2 shows the estimates

γ̂d,s for different values for the horizon s. The row labelled (1 − ρ)s/Γ shows the Dividends

Hypothesis predicted value for that expression evaluated at ρ = 0.96273 and β = 80/81, which

replicates the regression estimate at horizon s = 5. Note that regression predicted dividend

growth matches theory predicted growth quite well at all horizons given these parameter

values, offering support for our AR(1) model for the transitory component of dividends.

horizon s = 1 s = 5 s = 10 s = 15
(1− ρ)s/Γ 0.0006144 0.002852 0.005209 0.007160

γ̂d,s 0.00093581 0.0028518 0.005122 0.0067141
S.E. (0.00047511) (0.00069836) (0.00071879) (0.00068034)
t-Stat 1.9697 4.0836 7.1258 9.8687
R2 0.0405 0.159 0.38 0.555

Table 2: Estimates from regressions of the form in regression 2 with β = 80/81.

In what follows, we use as our baseline parameters β = 80/81, ϕ̄ = −0.9, and ρ = 0.96273.

5 Forecasting Regression Results

In this section, we report results from forecasting quasi returns (regression 1) and price

growth (regression 3) using the stationary price dividend spread pTt as the predictor under

our linear model of dividends with parameters β = 80/81 and ρ = 0.96273. Note that we

have used the dividend growth regression (regression 2) to estimate the parameter ρ. Thus,

the model mechanically fits the relationship between dividend growth and pTt .
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We begin with results from regression 1 at various horizons s shown in Table 3. As we

see in this table, there is no evidence that the quasi return rt,t+s can be forecast with the

price-dividend spread pTt . The estimated coefficients γ̂r,s and the regression R2 are all very

close to zero. Thus, these regressions do not reject the central property of the Dividends

Hypothesis, which is that ϕt and expected quasi-returns are constant.

horizon s = 1 s = 5 s = 10 s = 15
γ̂r,s 0.0078894 -0.00062418 0.014361 0.0005422
S.E. ( 0.019114) ( 0.031424) (0.039455) ( 0.044795)
t-Stat 0.41275 -0.019863 0.36398 0.012104
R2 0.00185 4.48e-06 0.00159 1.88e-06

Table 3: Estimates from regressions of the form in regression 1 with β = 80/81.

We next consider results from regression 3 with β = 80/81 and ρ = 0.96273. We present

these results in Table 4. Recall that under the Dividends Hypothesis, the coefficient on pTt in

this price-dividend spread growth regression should equal 0. The table indicates that that is

indeed the case. Thus, we do not reject the property of the stricter version of the Dividends

Hypothesis that the series xt constructed from the data given β, ρ and ϕ̄ is a martingale.

horizon s = 1 s = 5 s = 10 s = 15
γ̂p,s 0.0014502 -0.0015068 0.018158 0.013945
S.E. (0.014934) (0.026657) ( 0.03477) (0.040873)
t-Stat 0.09711 -0.056524 0.52223 0.34118
R2 0.000102 3.63e-05 0.00328 0.00149

Table 4: Estimates from regressions of the form in regression 3 with β = 80/81 and ρ =
0.96273.

In these forecasting regressions we have used the valuation metric pTt as our explanatory

variable. As shown in equation (15), given our model, pTt is comprised of a scaled version of

the impact of the stationary component of dividends on price and the impact of the residual

term ϕt on price. Under the Dividends Hypothesis, this variable is stationary.

One might be tempted to use other valuation metrics as the explanatory variable in

these regressions. But under the Dividends Hypothesis, xt is non-stationary, and thus any

valuation metric that contains xt will be non-stationary. At the same time, the realized

changes in variables being forecast in regression 1 and regression 3 contain realized values of

future changes in xt+s − xt. As a result, if one estimates regression 1 or regression 3 using a

valuation metric including xt as an explanatory variable, one will find spurious results that
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appear to contradict the Dividends Hypothesis, but which are really uninformative about

the truth of that hypothesis. We review this issue in Appendix D.

6 Accounting for Observed Stock Prices

Given that our forecasting regression evidence from our linear model of dividends is consistent

with the Dividends Hypothesis, we now use our parameters β = 80/81, ρ = 0.96273, and

ϕ̄ = −0.9 and equation (10) with ϕt = ϕ̄ to estimate the sequence of unobserved trend

variables {xt}Tt=0 that account for the price and dividend data annually from 1929 to the

present.

We show the resulting series for dt in blue and xt in red in Figure 3.
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Figure 3: Blue Line: The ratio of dividends per share for the CRSP Value-Weighted Total
Market Index to PCE (dt), 1929-2023. Red Line: The expected long-run ratio of dividends
per share for the CRSP Value-Weighted Total Market Index to PCE, xt, that rationalizes
the observed price per share of this index using equation (10), 1929-2023.

The transitory component of dividends dt−xt is given by the difference between the blue

and red lines in the figure while the permanent component of dividends xt is given by the

red line. Note that with a high value of β, only modest variation in xt over time is needed

to account for the observed volatility of pt.
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Figure 3 indicates that from the start of our sample until around 1970, investors were

expecting dividends per share relative to consumption to decline over time (the red line is

below the blue line). Were these expectations reasonable? Well, dividends per share relative

to consumption did in fact decline steadily over this period! As described in Gârleanu and

Panageas (2023), this is what one would have expected in an economy in which new firms

continuously displace old ones. From 1980 onward, the model indicates that investors were

expecting future ratios of dividends per share to consumption to exceed the current level (the

red line is above the blue), with this gap being especially pronounced around the dot com

stock boom in 2000. And in fact, from around 2000 onward, dividends per share relative to

consumption have been generally rising, suggesting this optimism about future dividends per

share was more than irrational exuberance.

By construction, under this Dividends Hypothesis version of the model, movements in

the fundamental price p⋆t account for all the movements in pt observed in the data. We can

use equation (9) to break p⋆t into a component due to the transitory movements in dividends

and a component due to the permanent component in dividends, here β
1−βxt. In Figure 4, we

show the data on pt in blue and the path for β
1−βxt + ϕ̄ in red. Given our model, movements

in the difference between these two lines are accounted for by transitory fluctuations in

dividends given by βρ
1−βρ (dt − xt). We see in this figure that, under the Dividends Hypothesis,

movements in the permanent component of dividends account for most of the fluctuations in

price pt.

Given the finding in Figure 4 that the large majority of fluctuation in the stock price

pt are accounted for by fluctuations in the unobserved trend component xt of dividends

under our Dividends Hypothesis, one might be tempted to ask how one can know that these

fluctuations in the unobserved xt are not in fact standing in for fluctuations in the residual

component of price ϕt. As we argued in the previous section, this alternative hypothesis is

inconsistent with the forecasting regression evidence that we have presented. Thus, we take

this regression evidence as favoring the hypothesis that the fluctuations in the red line are,

in fact, driven by fluctuations in expectations of the long-run ratio of dividends per share to

consumption rather than by fluctuations in expected returns.

Finally, we use our parameter values and equation (5) to compute our model’s implications

for the dynamics of the expected return on equity one period ahead. Note that since we have

normalized price pt and dividends dt by PCE consumption, these model implications are for

the expected nominal return on equity in excess of nominal consumption growth. We present

the results of this calculation of model-implied expected returns in Figure 5. The series that

is plotted is net expected returns in percentage points, or 100(EtRt+1 − 1).
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Figure 4: Blue Line: The ratio of price per share for the CRSP Value-Weighted Total Market
Index to PCE (pt), 1929-2023. Red Line: The component of price corresponding to fluctua-
tions in the trend xt for dividends given by β

1−βxt + ϕ̄, 1929-2023.
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Figure 5: Blue Line: model implied expected returns on equity in excess of aggregate
consumption growth yearly 1929-2023. The formula for model-implied expected returns is

EtRt+1 = 1
β

(
1 + (β−1)ϕ̄

p⋆t+ϕ̄

)
. The series that is plotted is net expected returns in percentage

points, or 100(EtRt+1 − 1).
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We see in this figure that our model implies modest variation over time in the expected

return on equity in excess of consumption growth. Since this variation in returns corresponds

to a constant value of ϕt = ϕ̄, it does not contribute to volatility in stock prices.

7 A Second Log Linear Model Specification

In our first model specification, we assumed that the level of dividends per share relative to

PCE is integrated of order one and has normal innovations to both the trend and transitory

components. We refer to this model as our linear model of dividends relative to PCE.

In this section, we consider an alternative model of the dynamics of the logarithm of

the ratio of dividends per share to PCE similar to those frequently considered in the prior

literature. We refer to this second model as our log-linear model of the dynamics of dividends.

This alternative model leads to some non-linear expressions for the fundamental price p⋆t and

the residual term ϕt that we will approximate with first order Taylor expansions. With these

approximations, we can conduct forecasting exercises similar to those in Campbell and Shiller

(1988).

We conduct forecasting regressions with this approximate model and we find results con-

sistent with what we found with our first model. That is, we find that with a high value of β,

corresponding to a low value of ϕ̄, our forecasting regressions favor the Dividends Hypothesis

over the Excess Volatility Hypothesis.

Our second model of the dynamics of dividends is based on the following assumptions.

Assumption 1 Logs: Assume that log(dt) is an ARIMA process that is integrated of

order one. Let log(xt) be the trend of the Beveridge-Nelson decomposition of this time series.

Then

log(xt) ≡ lim
k→∞

Et log(dt+k)

with

log(xt+1) = log(xt) + ϵx,t+1. (21)

Assumption 2 Logs: Assume that the transitory component of log(dt) follows an AR(1)

process of the form

(log(dt+1)− log(xt+1)) = ρ (log(dt)− log(xt)) + ϵd,t+1. (22)

One interpretation of this model of the dynamics of log dividends is that it is simply the

analog in logarithms of the first model of the dynamics of dividends that we presented above.

A second interpretation of this model is that the log of dividends relative to PCE is
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subject to persistent shocks to its growth rate as in the long run risks model. In Appendix

E.1, following Morley (2002), we show how to compute the Beveridge-Nelson trend log(xt)

and the deviation from trend log(dt) − log(xt) for a model in which the dynamics of log

dividends are given by

log(dt+1)− log(dt) = zt+1 + ϵd,t+1 (23)

with

zt+1 = ρzzt + ϵz,t+1 (24)

Specifically, we show that the trend is given by

log(xt) ≡ lim
K→∞

Et log(dt+K) = log(dt) +
ρz

1− ρz
zt

with transitory component

(log(dt)− log(xt)) = − ρz
1− ρz

zt (25)

Note that this trend components log(xt) is a random walk and the transitory component

(log(dt)− log(xt)) is an AR(1).

Motivated by the work of Gârleanu and Panageas (2023), we favor this second interpreta-

tion of the dynamics of log dividends captured by the log versions of our Assumptions 1 and

2. This work emphasizes the role of ongoing entry by new firms via initial public offerings

in driving down the share of the total stock market represented by the index of price per

share as shown in Figure 2. This force of initial public offerings by new firms (or seasoned

issuances by incumbent firms) imparts a potentially fluctuating trend negative growth rate to

the logarithm of the ratio of dividends per share to consumption. At the same time, changes

in the payout policies of incumbent firms to favor share repurchases over dividends alter

net share issuance by these incumbent firms. This force imparts a potentially fluctuating

trend positive growth rate to the logarithm of dividends per share to consumption if share

repurchases are large enough. Changes over time in the strength of these two forces appear

as changes in the rate of growth of the logarithm of dividends per share to consumption and

anticipated changes in this growth rate are manifest in the logarithm of the aggregate price

dividend ratio.

7.1 Price and Fundamental Price in the Log-Linear Model

To compute the fundamental component of price p⋆t implied by this model of the dynamics

of log dividends, we must compute the model’s implications for the expected value of future
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dividends in levels, not logs. It is straightforward to show that the expected value of the

level of dividends implied by our second model is given by

Etdt+k = exp(ρk(log(dt)− log(xt)) + log(xt) + Jk),

where Jk is a sequence of terms given by

Jk =
1− (ρ2)k

1− ρ2
σ2
d

2
+
k

2
σ2
x +

1− ρk

1− ρ
ρdxσdσx,

where σx and σd are the standard deviations of ϵx,t+1 and ϵd,t+1 respectively and ρdx is their

correlation coefficient. The terms Jk are the standard correction for variance when computing

the expectation of a lognormal random variable. For details of this calculation see Appendix

E.2.

These calculations give us the following solution for the fundamental component of price

in this second model:

p⋆t =
∞∑
k=1

βk exp(Jk) exp(ρ
k(log(dt)− log(xt)))xt. (26)

In logs, we then have

log(p⋆t ) = log

(
∞∑
k=1

βk exp(Jk) exp(ρ
k(log(dt)− log(xt)))

)
+ log(xt),

where the first term on the right side of this equation represents the influence of the stationary

component of log dividends on log price. In what follows, we make use of the following first

order approximation to this nonlinear term around the point at which log(dt) = log(xt):

log

(
∞∑
k=1

βk exp(Jk) exp(ρ
k(log(dt)− log(xt)))

)
≈ ζ̄ + ψ(log(dt)− log(xt))), (27)

where

ζ̄ ≡ log

(
∞∑
k=1

βk exp(Jk)

)
and

ψ ≡ 1∑∞
k=1 β

k exp(Jk)

[
∞∑
k=1

βk exp(Jk)ρ
k

]
.

We then work with the following first-order approximation to the fundamental component
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of price

log(p⋆t ) ≈ ζ̄ + ψ(log(dt)− log(xt)) + log(xt). (28)

We note from equation (1) that, by definition, p⋆t = pt−ϕt. This observation gives us the

following linear approximate model for log price

log(pt − ϕ̄) ≈ ζ̄ + ψ(log(dt)− log(xt)) + log(xt) + log(ξt) (29)

where

log(ξt) ≡ log(pt − ϕ̄)− log(pt − ϕt).

Note that this approximation in equation (29) differs from that commonly used in the prior

literature in that it includes the constant term ϕ̄ < 0.

Under the Dividends Hypothesis, we should have log(ξt) = 0.

7.2 Forecasting Regressions in the Log-Linear Model

We now run forecasting regressions to test the Dividends Hypothesis in the log-linear model

that are directly analogous to those we applied previously to the linear model.

Fist, we construct a forecasting variable, log(pTt ) that is stationary under the Dividends

Hypothesis. That statistic is

log(pTt ) ≡ log(pt − ϕ̄)− log(dt), (30)

which from equation (29) is given by

log(pTt ) ≈ ζ̄ + (ψ − 1)(log(dt)− log(xt)) + log(ξt).

Under the Dividends Hypothesis, log(ξt) = 0 and thus log(pTt ) is stationary. Note that

log(pTt ) as defined in equation (30) is the standard measure in logs of the dividend-price ratio

adjusted by the constant ϕ̄.

The first test of the Dividends Hypothesis that we consider in this second model is an

analog to return regressions of the form in regression 1 that we conducted with our first

model. We develop these regressions as follows.

By definition, if we compute the returns to the fundamental component of price as

R⋆
t+1 ≡

p⋆t+1 + dt+1

p⋆t
,
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we then have

EtR⋆
t+1 =

1

β
.

Thus, realized returns on the fundamental price should not be predictable.

Under the Dividends Hypothesis, p⋆t = pt − ϕ̄. Thus, under the Dividends Hypothesis,

R⋆
t+1 =

pt+1 − ϕ̄+ dt+1

pt − ϕ̄
(31)

should not be predictable.

We measure realized log returns on the fundamental price over horizon s by

log(R⋆
t,t+s) =

s−1∑
k=0

log(R⋆
t+k+1). (32)

We then ask whether these log returns are predictable using regressions of the form5

log(R⋆
t,t+s) = αR⋆,s + γR⋆,s log(p

T
t ) + errorR⋆,t+s. (regression 4)

Under the Dividends Hypothesis, we expect estimates of the slope coefficient γ̂R⋆,s = 0. Note

that regression 4 does not require us to take a stand on the parameters β or ψ and thus does

not rely on any specific model of the transitory dynamics of log dividends.

The stricter test of the Dividends Hypothesis involves exploring whether we can reject the

specified process for dividends, and in particular the assumption that log(xt) is a martingale.

The analogue of equation (17) in the log-linear model is

Et log(pt+s − ϕ̄)− log(pt − ϕ̄) = ψ (Et log(dt+s)− log(dt))

and the analogue of the expression for expected dividend growth is

Et log(dt+s)− log(dt) =
(ρs − 1)

ψ − 1

(
log(pTt )− ζ̄

)
.

We therefore run the following two regressions. First, we run

log(dt+s)− log(dt) = αd,s + γd,s log(p
T
t ) + errord,s, (regression 5)

5Here we are implicitly assuming that

log
(
EtR

⋆
t+1

)
− Et log

(
R⋆

t+1

)
= constant

Given that assumption, if EtR
⋆
t+1 is constant over time then Et log

(
R⋆

t+1

)
is also constant.
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and compare γd,s to the expected coefficient (ρs−1)
ψ−1

.

Then we run

log(pt+s−ϕ̄)−log(pt−ϕ̄)−ψ(log(dt+s)−log(dt)) = αp,s+γp,s log(p
T
t )+errorp,s, (regression 6)

and check whether γ̂p,s = 0. Checking whether γ̂p,s = 0 is equivalent to checking whether

changes in log(pt− ϕ̄)−ψ log(dt) are predictable by log(pTt ). Recall, from equation (29), that

under the Dividends Hypothesis,

log(pt − ϕ̄)− ψ log(dt) ≈ ζ̄ + (1− ψ) log(xt).

Thus, finding γ̂p,s ̸= 0 would indicate that log(xt) is predictable, and would be evidence

against the stricter version of the Dividends Hypothesis according to which log(xt) con-

structed from the data with our baseline parameters is a martingale.

7.3 Forecasting Regression Results in the Log-Linear Model

To run these regressions in the log-linear model we use the same values for β = 80/81 and

ϕ̄ = −0.9 that we used in our first linear model. Thus, under the Dividends Hypothesis, our

second model has precisely the same implications for the evolution of expected returns as

shown for our first model in Figure 5.

To set the parameter ψ, observe that in the limit as the variance of shocks shrinks to zero

ψ → (βρ/(1−βρ))/(β/(1−β)). We translate ρ and β to a value for ψ using that expression.

We estimate a value of ρ = 0.96936 using regression 5. We use ψ = 0.2809.

We begin with the returns regression 4. Recall that this regression does not require

assumptions on β or ρ. Results are shown in Table 5. Consistent with the Dividends Hy-

pothesis, we find estimates of γ̂R∗,s = 0 and regression R2 very close to zero. We interpret

this evidence as favoring the Dividends Hypothesis.

horizon s = 1 s = 5 s = 10 s = 15
γ̂R∗,s -0.0023026 -0.012467 -0.00041287 -0.007919
S.E. ( 0.018881) ( 0.032463) (0.043138) ( 0.051041)
t-Stat -0.12195 -0.38402 -0.0095709 -0.15515
R2 0.000162 0.00167 1.1e-06 0.000309

Table 5: Estimates from regressions of the form in regression 4 with ϕ̄ = −0.9.

We present regression results using the log-linear approximation to realized log returns on

the fundamental price developed in Campbell and Shiller (1988) in Appendix E.3. Those re-
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gressions also show no evidence of log return predictability for log returns on the fundamental

price.

Table 6 presents results from estimating the dividend growth regression 5 given ϕ̄ = −0.9.

The third row of the table reports the model predicted values for these estimates given our

values for β and ρ.

horizon s = 1 s = 5 s = 10 s = 15
γ̂d,s 0.052064 0.20036 0.35897 0.51162

1
1−ψ (1− ρs) 0.0426 0.2004 0.3719 0.5187

S.E. ( 0.035352) (0.05512) ( 0.062982) (0.067642)
t-Stat 1.4727 3.635 5.6996 7.5637
R2 0.023 0.131 0.281 0.423

Table 6: Estimates from regression 5 with ϕ̄ = −0.9. In row 3, we use ρ = 0.96936 and
ψ = 0.2809

Finally, Table 7 reports the estimates from the price growth regression 6. Recall that the

stricter test of the Dividends Hypothesis is that γ̂p,s is supposed to be equal to zero. Our

estimated coefficients are not significantly different from zero. Thus, this test fails to reject

the stricter version of the Dividends Hypothesis.

horizon s = 1 s = 5 s = 10 s = 15
γ̂p,s -0.0051709 -0.014316 -0.00035708 -0.010639
S.E. ( 0.014785) ( 0.027824) (0.037311) (0.044851)
t-Stat -0.34973 -0.51452 -0.0095703 -0.23721
R2 0.00133 0.003 1.1e-06 0.000721,

Table 7: Estimates from regression 6 with β = 80/81, ϕ̄ = −0.9 and ψ = 0.2809.

To summarize our regression evidence to this point, we find that with parameter values

β = 80/81 and ϕ̄ = −0.9 our regression evidence that favors the Dividends Hypothesis

over the Excess Volatility Hypothesis using both the linear and the log-linear models of the

dynamics of dividends.

8 Accounting for Observed Stock Prices with our Log-

Linear Model of Dividends

Given that our forecasting regression evidence from our log-linear model of dividends is

consistent with the Dividends Hypothesis, we now use our parameters β = 80/81, ϕ̄ = −0.9
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and ψ = 0.2809 to estimate the sequence of unobserved trend variables {xt}Tt=0 that account

for the price and dividend data annually from 1929 to the present. We estimate log(xt) using

equation (29) given the observed sequences for {pt} and {dt} using ζ̄ = log(β/(1 − β)) and

log(ξt) = 0.

We show the resulting series for log(dt) in blue and log(xt) in red in Figure 6. The

transitory component of log dividends given by log(dt) − log(xt) is the difference between

these two lines. By comparing this figure to Figure 3, we see that results from our two

specifications of the dynamics of dividends are consistent with each other. That is, with

these parameter values, our model requires only modest variation over time in the trend

component of dividends (here log xt) to account for the data on log stock prices log(pt).

Given the equivalence between our log-linear model of dividends and a long run risks

model of the form in equations (23) and (24), we also show the time series for the expected

growth rate of the log ratio of dividends per share relative to PCE needed to account for the

data on log stock prices. Specifically, we use our estimate of the sequence {log(xt)} above

together with a choice of ρ = 0.96936 and equation (25) to estimate the trend growth rates

of the logarithm of the ratio dividends per share to PCE given by {zt}.
We show results in Figure 7. For comparison purposes, we show the realized values of ten

year growth rates of log dividends relative to PCE (log(dt+10)− log(dt))/10 in blue and the

model-implied values of zt in red. We argue that the model-implied trend growth rates zt

line up fairly well with the subsequently realized log dividend growth rates in the data. We

see this as further confirmation of the Dividends Hypothesis in this log-linear model.

One striking feature of the results in this figure is that the trend growth rate in log

dividends per share relative to consumption needed to justify the high valuation of the stock

market in the year 2000 shown in red for that year is in line with the realized growth rates of

log log dividends per share relative to consumption over the next twenty years (approximately

4% in blue between 2000 and 2010). Thus, in an ex-post sense, the exuberance of the stock

market boom of the late 1990’s regarding expected dividend growth was not overly optimistic

relative to what ended up happening to dividend growth over the next twenty years.

Finally, in Figure 8, we show the implications of our log-linear model for the log price

dividend ratio in the data given by log(pt)− log(dt) in blue and the model-implied log price

dividend ratio on the fundamental price given by log(pTt ) in red. Note that the difference

between these two series is given by

log(pt)− log(pt − ϕ̄)

As we discuss below, it is the difference between the log price-dividend ratio using observed
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Figure 6: Blue Line: The logarithm of the ratio of dividends per share for the CRSP Value-
Weighted Total Market Index to PCE, log dt, 1929-2023. Red Line: The expected long-run
value of the logarithm of the ratio of dividends per share to PCE, log xt, that rationalizes
the observed price per share of this index, 1929-2023.
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Figure 7: Blue Line: The realized annual growth rate of the logarithm of the ratio of dividends
per share for the CRSP Value-Weighted Total Market Index to PCE over the 10 years after
date t, (log dt+10 − log dt)/10, 1929-2013. Red Line: The expected trend growth rate of the
logarithm of the ratio of dividends per share to PCE, zt, that rationalizes the observed price
per share of this index, 1929-2023.
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prices and the model-implied log price-dividend ratio on the fundamental price that accounts

for the difference between our return and dividend growth forecasting results and prior results

found with ϕ̄ = 0.

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
2.5
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3.5

4

4.5

5

5.5

Figure 8: Blue Line: the log price-dividend ratio, log(pt)− log(dt), 1929-2013. Red Line: the
model implied log fundamental price-dividend ratio, log(p⋆t )− log(dt) = log(pt− ϕ̄)− log(dt),
1929-2023.

9 Regression Results With Alternative β and ϕ̄

To this point, we have examined the implications of the data for the Dividends Hypothesis

that fluctuations in observed prices pt are driven by fluctuations in the fundamental price p⋆t

with a high value of β = 80/81 and a constant residual term ϕ̄ < 0. We have found that,

with these parameters, in our forecasting regressions, the data favor Dividends Hypothesis

over the Excess Volatility Hypothesis in both our linear model and log-linear model of the

dynamics of dividends.

In this section, we repeat our forecasting regressions in both models of dividends with

lower values of β in the linear model and alternative values of the constant term ϕ̄ = 0 in the

log linear model. With low values of β in the linear model and value of ϕ̄ close to zero in the

log-linear model, we find that the evidence from our quasi-return and log return forecasting

regressions favors the Excess Volatility Hypothesis over the Dividends Hypothesis.
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Based on these findings we argue that the question of whether stock prices are excessively

volatile comes down to the question of which combination of parameters β and ϕ̄ are appro-

priate to use with the data to answer this question. We see this as a fruitful area for future

research.

We begin with a reexamination of regression 1 in the context of our linear model of

the dynamics of dividends, in which the ratio of dividends to PCE is assumed to follow an

ARIMA process. Recall that to construct the variables in that regression, pTt from equation

(14) and rt,t+s from equation (12), we simply need the parameter β and the data on pt and

dt itself. We do not need to specify the parameter ϕ̄ to construct these variables and run

regression 1.6 Thus, given the data, our results from the quasi-return forecasting regressions

in the linear model of dividends depend only on the parameter β.

In Figure 9, we show the estimated slope coefficients γ̂r,s when we re-run quasi-return

forecasting regressions (regression 1) with alternative values of β. The x-axis plots β/(1−β)

which is in units of a price-dividend ratio. We see clearly in this graph that these regression

estimates point to quasi-return predictability when β is low and do not when β is high. This

finding is consistent with results regarding the sensitivity of results to β in the linear model

reported in Campbell and Shiller (1987)

We now turn to our second model in which we model the dynamics of the log of dividends.

We reexamine results from our forecasting regression 4 in that model using alternative values

of ϕ̄ when we compute log(pTt ). Note that, given the data, ϕ̄ is the only parameter that enters

into data construction for this regression.

In Figure 10, we show the estimated slope coefficients γ̂R∗,s when we re-run return fore-

casting regression 4 with alternative values of ϕ̄. The x-axis plots ϕ̄ ∈ [−1, 0]. We see clearly

in this graph that these regression estimates point to predictability of log returns on the

fundamental price when ϕ̄ is closer to zero and no such predictability when ϕ̄ is close to −1.

10 Conclusion

In this paper, we use the present value model of Campbell and Shiller (1987) in our equation

(1) to frame the question: Do stock prices move too much to be justified by subsequent

movements in dividends? This framing of the question leads to our first, linear, model of the

dynamics of dividends. We then extend our analysis of this question to follow more closely

the model of Campbell and Shiller (1988) with a second, log-linear, model of the dynamics

of dividends.

6However, to derive our model’s implications for mean expected returns and quasi-returns, we do need to
specify this parameter.
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Figure 9: Estimated slope coefficients γ̂r,s from quasi-return forecasting regressions (regres-
sion 1) at horizons s = 1, 5, 10 and 15 years with alternative values of β. The x-axis plots
β/(1− β) which is in units of a price-dividend ratio.
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Figure 10: Estimated slope coefficients γ̂R∗,s from log return forecasting regressions (regres-
sion 4) at horizons s = 1, 5, 10 and 15 years with alternative values of ϕ̄.
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In both models, we focus on the dynamics of measures of price per share and dividends per

share relative to aggregate consumption. We choose to scale the data on price and dividends

per share by aggregate consumption based on a conjecture that the ratio of the price to

a perpetual claim to aggregate consumption relative to current aggregate consumption is

constant over time at a value of β/(1 − β). This is equivalent to assuming in a Gordon

growth model applied to aggregate consumption that the risk adjusted discount rate for

valuing aggregate consumption less expected consumption growth has remained constant

over time. In our baseline calibration we set this price-dividend ratio for a claim to aggregate

consumption at a high value of 80. We reconcile that assumption with high realized returns

on equity in excess of consumption growth observed in the data by assuming a negative

additive constant term in asset prices, reflecting compensation for risk. This constant term

depresses the observed stock price and thus raises observed rates of return on equity implied

by the model.

Investors in our model receive news about dividends in the long run as captured by the

Beveridge-Nelson trend in the ratio of dividends per share to aggregate consumption. When

investors evaluate the price impact of this news using a high value for the discount factor

β, small movements in this long run expected value generate high volatility in equilibrium

stock prices.

We use a suite of forecasting regressions suggested by Campbell and Shiller (1987) and

Campbell and Shiller (1988) to test the hypothesis that observed movements in stock prices

relative to consumption are driven by changes in the expected present value of dividends

relative to consumption against the alternative hypothesis that they reflect movements in

future expected returns. We find that with the parameter assumptions described above, the

Dividends Hypothesis passes these regression tests.

We then used these models to offer accounts, year-by-year from 1929 to 2023, of the

specific movements in the Beveridge-Nelson trend for the ratio of dividends to aggregate

consumption or the log of this ratio needed to reconcile the data on current dividends per

share relative to consumption and the current ratio of price per share relative to consumption.

We argue that these fluctuations look plausible. In the case of our second, log-linear model of

the dynamics of dividends, we also show an interpretation of the model in terms of a simple

long run risks model. One striking result from this exercise is that the expected trend growth

rate for the log ratio of dividends per share relative to consumption needed to justify the high

stock market valuation of year 2000 are in line with the realized growth in the log ratio of

dividends per share relative to consumption observed over the next twenty years. Thus, the

exuberant stock market valuations of that time period do not seem unjustified in hindsight.

Finally, we confirm that our parameter assumptions of a high value of β and a low additive
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risk-adjustment term ϕ̄ are critical to our findings by repeating our analysis with alternative,

lower values of β and a value of the constant ϕ̄ = 0. When we do so, we find that the data

favor the Excess Volatility Hypothesis over the Dividends Hypothesis.

In sum, we see our findings as indicating that the answer one gives to the question

of whether the stock market moves too much to be justified by subsequent movements in

dividends really depends on parameters. What guidance do we have from theory regarding

appropriate parameter choices?

Much of the existing literature has focused on a log-linear model of the dynamics of

dividends together with a pricing kernel that is also conditionally lognormal. In such models,

risk typically impacts asset prices in a multiplicative rather than an additive way.

In contrast, in the linear model of the dynamics of dividends, dividends per share can

go negative. Combining that dividend process with a pricing kernel that is conditionally

lognormal delivers an additive and constant risk adjustment term in equilibrium valuations.

Which model should be preferred? When applied to data on dividends per share, the log-

linear model has the advantage of being consistent with the fact that dividends per share,

by definition, cannot go negative. But if one were to follow Miller and Modigliani (1961)

and focus on valuing total cash flows to equity rather than dividends per share, and total

market capitalization rather than price per share, one has to confront the fact total cash

flows to equity in the data frequently do go negative. So our first linear model seems more

appropriate for studying fluctuations in total market capitalization of the stock market and

total flows to owners of equity from the perspective of an “equilibrium” investor who holds

the entire market at every moment in time.

Ultimately, however, both models need to be consistent with the same paths of realized

and expected rates of return, as we discuss in Appendix B. Future research should seek

to reconcile these two valuation perspectives in terms of their implications for whether or

not there is a substantial constant additive risk adjustment ϕ̄ in stock market valuation.

Resolving this question will further improve our understanding of the drivers of stock market

volatility.
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Appendices

A The Argument for Excess Volatility in Shiller (1981)

In this appendix, we review the criticisms of the interpretation of Figure 1 in Shiller (2014),

which updates Shiller (1981), as evidence for excess volatility. Kleidon (1986) and Marsh and

Merton (1986) criticized this interpretation on the grounds that both the levels of dividends

per share and price per share are non-stationary. We focus on the criticisms of Kleidon

(1986).

Let the realized data on price per share be given by {Pt}. Let the realized data on

dividends per share be given by {Dt}.
Consider the following simple valuation model. In this valuation model, assume that the

logarithm of dividends per share, denoted by dt, evolves according to

dt+1 = g̃ + dt + σϵt+1,

where ϵt+1 ∼ N(0, 1) and g̃ is a constant. With this assumption, we have

EtDt+1 = (1 + g)Dt

and, more generally,

EtDt+k = (1 + g)kDt,

where

g = exp(g̃ +
1

2
σ2)− 1.

With this model of expected dividends, create the model’s implications for price per share

based under constant discounting as

Pt =
∞∑
k=1

(1 + r)−kEtDt+k =
1 + g

r − g
Dt. (33)

The prediction for the price constructed in Shiller (1981) and Shiller (2014) under the

assumption that we have an infinite realized sequence of dividends is

P ⋆
t =

∞∑
k=1

(1 + r)−kDt+k.

That is, we use realized dividends without the expectation.
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In this case, both Pt and P ⋆
t are non-stationary. But, theoretically, since the model’s

implication for the price Pt is directly proportional to the currently realized dividend Dt, we

have that the standard deviation of log changes in price is given as

Std (log(Pt+1)− log(Pt)) = σ.

In contrast, it is straightforward to verify via a Monte Carlo simulation that the standard

deviation of log changes in the predicted price constructed using the method above is

Std
(
log(P ⋆

t+1)− log(P ⋆
t )
)

which is typically at least an order of magnitude smaller than σ. Kleidon (1986) shows several

results from such Monte Carlo simulations that lead to figures with these simulated data very

similar in appearance to those in Shiller (1981).

The issue of why this approach to assessing stock market volatility goes wrong can be seen

clearly from equation (33). If dividends are a random walk, then news that arrives between

t and t+ 1 in the form of the shock ϵt+1 moves agents’ expectations of future dividends out

into the infinite future, since

EtDt+k = Dt

and

Et+1Dt+k = Dt+1.

In contrast, if we follow the procedure in Shiller (1981) to construct P ⋆
t , then we are

effectively assuming that agents’ expectations of future dividends never move at all. That is,

E⋆tDt+k = Dt+k

and

E⋆t+1Dt+k = Dt+k.

The only updating to P ∗
t that occurs is that the first dividend is dropped and the discounting

of future dividends is updated by (1 + r). That is, P ∗
t satisfies

P ⋆
t =

1

1 + r

[
Dt+1 + P ⋆

t+1

]
.

This equation implies that

log(P ⋆
t+1)− log(P ⋆

t ) = log(1 + r)− log

(
1 +

Dt+1

P ⋆
t+1

)
≈ r − Dt+1

P ⋆
t+1

.
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Given that {log(Dt)} is assumed to be a random walk with a constant drift and our assump-

tion of a constant discount rate r, one should not expect Dt+1

P ⋆
t+1

to be variable. It varies only

because of random runs of positive or negative values of ϵt leading to positive or negative

runs of realized dividend growth above or below the mean. A Monte Carlo simulation reveals

this variance to be very small.

B How a Value-Weighted Stock Index is Constructed

We use data on the CRSP Value-Weighted Total Market Index 1929-2023. We are some-

what pedantic in our presentation of this data as some readers may not be familiar with its

construction, and several elements of its construction are important in understanding the

motivation for the key assumptions in our valuation model.

The original data we use are CRSP indices of annual returns without dividends (denoted

by Rnd
t+1), returns with dividends (denoted by Rd

t+1), and total market capitalization (denoted

by TMCt) on the CRSP Value-Weighted Index combining stocks listed in the NYSE, AMEX,

and NASDAQ exchanges for the years 1929-2023. We focus on this time period as this is the

time period for which we also have NIPA data on Personal Consumption Expenditures.

As is well known, CRSP annual value-weighted returns on the total stock market are

high on average and quite volatile. In our sample, the arithmetic averages of nominal and

real returns with dividends (Rd
t+1) are 11.6% and 8.6% respectively (deflating with the PCE

deflator), and these nominal and real returns have a standard deviations of 19.8% and 19.5%

respectively.

The measure of price per share for the CRSP Value-Weighted Index that we use as the

measure of the value of the stock market in our study is constructed from the cumulation of

annual returns without dividends Rnd
t+1. Specifically, if we let PDt denote the level of price

per share on the last day of year t, we construct PD,t+1 = Rnd
t+1PDt. Note that PDt is an index

number in that the initial value must be normalized.

We plot the ratio of this index of price per share to Personal Consumption Expenditures

(PCE) in the left panel of Figure 1. We have normalized the index of price per share so that

the initial value of this ratio is equal to one. As is clearly evident in this figure, this ratio is

quite volatile.

The measure of dividends per share for the CRSP Value-Weighted Index that we denote

by Dt and use as our measure of cash flows to someone holding the CRSP Value-Weighted

Index is constructed to solve the following equation

Dt+1 + PD,t+1

PDt
= Rd

t+1
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That is, given the index for price per share, the index for annual dividends per share is chosen

so that returns match value-weighted returns with dividends. This equation pins down the

ratio of dividends per share to price per share. The scale of dividends per share is set by the

normalization of the level of price per share.

We plot the ratio of this index of dividends per share to PCE in the right panel of Figure

1.

The concepts of price per share and dividends per share for a broad stock market index are

constructed to meet specific needs that are not the same as those of an academic researcher

seeking to understand fluctuations in the value of the stock market. In particular, the measure

of price per share represents the dynamics of the value of and payouts to the portfolio of an

investor who follows a very specific trading strategy that does not correspond to equilibrium

notions of “holding the market” as in Sharpe (1964) and Lucas (1978). An investor who

invested to track the CRSP Value-Weighted Total Market Index, would end up holding a

constantly changing share of the total market capitalization of that index, with the changes

in that share of the market held engineered specifically to reduce the volatility of the cash

flows to that investor, leaving that investor only with payouts from dividends. We argue, then,

that it is no surprise that empirical work using these data would arrive at the conclusion that

stock prices move too much to be justified by subsequent changes in payouts. This finding

is hard-wired into the construction of the data.7

An alternative approach to assessing whether the volatility of the stock market is too

high relative to the volatility of the cash flows going to someone invested in the market is

to examine the cash flows to an investor who followed an “equilibrium” strategy of holding

a constant fraction of the total market capitalization of the stocks in a broad stock index at

every moment in time. This is the portfolio strategy that we take as the equilibrium strategy

of “holding the market.” As we describe next, it is a simple exercise to construct these cash

flows using data on the index returns including dividends, index returns excluding dividends,

the level of the index in question, and the total market capitalization of the stocks in the

index. This methodology is presented in Dichev (2006), who notes that it is commonly used

to in the mutual fund industry to reconcile fund returns, fund flows, and fund market values.

When we do so, using the CRSP Value-Weighted Total Market Index as an illustration, we

find that the cash flows associated with this “equilibrium” investment strategy are massively

volatile, calling into question the conclusion that stock prices move too much to be justified

by subsequent movements in dividends. It is straightforward to illustrate the same findings

7This concern is heightened by the recognition that in the decades following World War II, firms smoothed
their dividend payouts. See Marsh and Merton (1986), Chen, Da, and Priestly (2012) and the papers
cited therein for a discussion of the impact of dividend smoothing on variance bounds tests and predictive
regressions.
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with other broad value-weighted stock indices.

To begin, we review the basics of the construction of a broad value-weighted stock market

index.

At any point in time, t, a value-weighted stock index X(t) is given as a time-varying

fraction of the total market capitalization of the stocks in the index. That is, if we let Ω(t)

be the set of stocks in the index, and pi(t) and si(t) be the prices and shares outstanding for

those stocks, then the total market capitalization of the stocks in the index, denoted here by

TMC(t), is given by

TMC(t) =
∑
i∈Ω(t)

pi(t)si(t). (34)

The level of the index at t, which we denote by X(t), is given by

X(t) =
1

θ(t)
TMC(t), (35)

where θ(t) is called the “divisor” for the index at t. The t in θ(t) is there to denote that this

divisor changes over time. Note here that 1/θ(t) represents the fraction of the total market

capitalization of the stocks in the index held at t by an investor tracking the level of index

rather than the total market capitalization of the stocks in the index.

The gross value-weighted return on this index between periods t and t+ 1 not including

dividends is given by

Rno dividends
t,t+1 =

∑
i∈Ω(t)

(
pi(t)si(t)∑

j∈Ω(t) pj(t)sj(t)

)
pi(t+ 1)

pi(t)
. (36)

If we denote by di(t+1) the dividend paid by firm i at time t+1 to someone who owned

the share at time t, then aggregate dividends paid in t+ 1 are given by

D(t+ 1) =
∑
i∈Ω(t)

di(t+ 1)si(t), (37)

and dividends per share are given by

DPS(t+ 1) =
1

θ(t)
D(t+ 1). (38)

The gross value-weighted return on this index between periods t and t + 1 including
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dividends is given by

Rw dividends
t,t+1 =

∑
i∈Ω(t)

(
pi(t)si(t)∑

j∈Ω(t) pj(t)sj(t)

)(
pi(t+ 1) + di(t+ 1)

pi(t)

)
. (39)

The divisor at t + 1, denoted by θ(t + 1) is chosen so that the change in the index level

from t to t+ 1 corresponds to the gross value-weighted return without dividends; that is,

X(t+ 1)

X(t)
= Rno dividends

t,t+1 . (40)

From equation (36), this implies that

X(t+ 1) =
1

θ(t)

∑
i∈Ω(t)

pi(t+ 1)si(t).

With this construction, it is also the case that the gross value-weighted return including

dividends corresponds in the natural manner to the returns defined in terms of price per

share and dividends per share. That is,

X(t+ 1) +DPS(t+ 1)

X(t)
= Rw dividends

t,t+1 . (41)

What we have in equations (40) and (41) is that data on the price per share and dividends

per share for the index can be used to reproduce the value-weighted returns on the stocks

in the index without and with dividends between periods t and t + 1 in a natural manner

consistent with what the notation would be if the entire index were a single firm.

But how is this construction achieved? In reality, the stocks in the index are not a single

firm since some stocks are added and some a removed and since the incumbent firms in the

index often take actions to change their number of outstanding shares. To deal with these

issues, the divisor of the index is adjusted so that equation (35) is also satisfied in period

t+ 1. This approach to index construction implies that the divisor changes from period t to

period t+ 1 according to

θ(t+ 1) =

∑
i∈Ω(t+1) pi(t+ 1)si(t+ 1)∑

i∈Ω(t) pi(t+ 1)si(t)
θ(t) (42)

Here, we see that the construction of the index implies a certain trading strategy that

does not correspond to holding a constant share of the market capitalization of the stocks in

the index. An investor who aims to hold a portfolio that tracks this index would be required
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to adjust the fraction of the total market capitalization of the stocks in the index that he

or she held from 1/θ(t) to 1/θ(t + 1), as indicated in equation (42). That is, if, at t + 1,

the shares outstanding for the firms in the index at t + 1 have increased when evaluated at

t + 1 prices, because of either incumbent firms issuing more shares on net (raising capital),

or firms being added to the index at t+ 1 being more valuable than firms leaving the index

between t and t+1, the divisor rises, and the implied share of the total market capitalization

of the stocks in the index held by an investor tracking the index falls. Likewise, if incumbent

firms buy back their shares (returning capital), of if firms being added to the index at t+ 1

are less valuable than firms leaving the index between t and t + 1, the divisor falls and the

implied share of the total market capitalization of the stocks in the index held by an investor

tracking the index rises.

More generally, there is a long list of circumstances that lead to changes in the number

of shares outstanding for the firms in the index between t and t + 1 that are referred to as

corporate actions. These include initial public offerings, delistings, mergers and acquisitions,

reverse mergers/takeovers, tendered shares, spin-offs, rights offerings, and certain transac-

tions connected with warrants, options, partly paid shares, convertible bonds, contingent

value rights, and so on. The staff at CRSP (and S&P Dow Jones Indices for their indices)

invest considerable resources tracking all of these events and adjusting the index divisor

accordingly.

What this index construction methodology implies is that an investor who aims to hold

a portfolio that tracks the level of the index over time will not participate in any of these

corporate actions. As a result, this investor receives only the cash flows associated with

dividends paid at t+1 by incumbent firms in period t. This investor will receive neither the

cash flows associated with new share issuance or share buybacks by these incumbent firms

nor the cash flows associated with the entry and exit of firms from the index (or any of the

other possible corporate actions). Instead of participating in these cash flows, an investor

who aims to track the level of the index simply adjusts the fraction held of the total market

capitalization of the stocks in the index instead of contributing or removing cash as indicated

by these corporate actions.

How then can we use the data from the index to recover the cash flows received by an

investor following the equilibrium trading strategy of “holding the market” at all times. To

do this, we invoke the theorem of Miller and Modigliani (1961) that asserts that changes in a

firm’s dividend policy to return cash to shareholders in the form of net buybacks change nei-

ther the returns nor the market capitalization of the firm. Using this principle and following

Dichev (2006), we construct the additional cash flows accruing to an investor following the

equilibrium trading strategy of “holding the market” at all times, denoted here by CAFCt+1
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for corporate action cash flows using the equation

CACF (t+ 1) = Rno dividends
t,t+1 TMC(t)− TMC(t+ 1). (43)

We then have the total cash flows to an equilibrium investor holding the market at t+ 1 are

D(t+ 1) + CACF (t+ 1).

Equation (43) is an accounting identity that follows from a reconciliation of returns on

the market from t to t+1 and the change in market capitalization of the market as a whole.

This accounting identity implies that these cash flows from corporate actions can be stated

equivalently as

CACF (t+ 1) =
∑
i∈Ω(t)

pi(t+ 1)si(t)−
∑

i∈Ω(t+1)

pi(t+ 1)si(t+ 1).

That is, these are the cash flows that arise from all changes in the number of shares out-

standing from time t to time t+ 1 when valued at prices at time t+ 1.

Now, what impact do these calculations have on the ratio of dividends per share to price

per share as measured by this index? We have by definition that the ratio of dividends per

share to price per share is equal to the ratio of total dividends to total market capitalization

of the stocks in the index; that is,

DPS(t)

X(t)
=

D(t)

TMC(t)
.

This then implies that

DPS(t)

X(t)
=
D(t) + CACF (t)

TMC(t)
− CACF (t)

TMC(t)
. (44)

Consider the implications of Miller and Modigliani (1961) for the terms in this equation.

In their analysis, they take the total cash flows to equity investors D(t)+CACF (t) as given.

With this assumption, they show that total market capitalization TMC(t) is independent

of the payout policy as determined by the split of total payouts into dividends D(t) and

cash flows arising from corporate actions CACF (t). Thus, the first ratio on the right side

of equation (44), given by D(t)+CACF (t)
TMC(t)

is fundamental. It is not impacted by changes in

corporate actions. Of course, the other two ratios, DPS(t)
X(t)

and CACF (t)
TMC(t)

are impacted by

corporate actions. To the extent that the ratio CACF (t)
TMC(t)

is volatile, the relative volatility of

the fundamental ratio D(t)+CACF (t)
TMC(t)

and the ratio of dividends per share and price per share
DPS(t)
X(t)

will be different. To the extent that there is are low frequency movements in the
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ratio CACF (t)
TMC(t)

not present in the fundamental valuation ratio D(t)+CACF (t)
TMC(t)

, there will be low

frequency movements in the ratio of dividends per share to price per share DPS(t)
X(t)

not driven

by fundamentals but instead driven by corporate actions.

In this appendix, we compare our measure of total payouts to equilibrium investors in

equity as represented by the CRSP Value-Weighted Total Market Index to that constructed

in Davydiuk et al. (2023) which builds on the work of Boudoukh et al. (2007) but also uses

the CRSP Stock file as we do. In Figure B.1, we show in blue the ratio of total payouts on

the CRSP Value-Weighted Total Market Index to total market capitalization of the stocks in

that index ((D(t)+CACF (t))/TMC(t)) from 1926-2023. In red, we show the ratio of equity

cash payouts less net equity issuance to total market capitalization as measured in Davydiuk

et al. (2023) for the time period 1975-2017 obtained from the Journal of Finance website

for this article. Note that the measure constructed in Davydiuk et al. (2023) accounts for

share buybacks and also for changes in entity structure due to initial public offerings (IPOs),

mergers, acquisitions, and exchanges.

As is evident in this figure, these two measures are quite similar.

1920 1940 1960 1980 2000 2020 2040
-0.15
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-0.05

0

0.05

0.1

0.15
CRSP Annual Total Payout Yield and DRSY JF Equity Payout Yield

Figure B.1: In blue: the ratio of payouts to an equilibrium investor to total market
capitalization of the stocks in the CRSP Value-Weighted Total Market Index ((D(t) +
CACF (t))/TMC(t)), where payouts are summed over the calendar year. In red: the ra-
tio of total payouts to equity to total market capitalization of equity from Davydiuk et al.
(2023).
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C An Explicit Pricing Kernel

We now present a micro-foundation for the assumption that ϕ̄ ̸= 0. It is based on an

explicit model of a pricing kernel in which innovations to the logarithm of the growth of

marginal utility are normal, as are innovations to the logarithm of consumption growth,

while innovations to the ratio of dividends per share to consumption dt are normal. We show

in particular that this model yields a valuation model for equity consistent with equation

(10).

We begin with standard assumptions regarding the dynamics of consumption growth and

of the pricing kernel used to value assets. Let the log of consumption growth between t and

t+ 1 be given by

gC,t+1 = ḡC + σgCϵC,t+1,

where ḡC measures trend growth, and shocks to the log growth rate σgCϵC,t+1 are drawn from

a Normal distribution with mean zero variance σ2
gC
.

Let the log of the pricing kernel be given by

mt+1 = m̄+ λCϵC,t+1 + λDϵD,t+1 + λXϵX,t+1,

where the parameters λC , λD and λX capture, respectively, the pricing kernel loadings on

the three shocks in the model: innovations to consumption growth ϵC,t+1, and the transitory

and permanent innovations to the ratio of dividends per share to consumption, ϵD,t+1 and

ϵX,t+1, that we introduced in the previous section.

These assumptions for consumption growth and the pricing kernel jointly imply that the

following three variables are all constant over time: (i) the price of a claim to consumption

one period ahead relative to current consumption, (ii) the expected growth of consumption,

and (iii) the riskless interest rate.

In particular, the price of a claim to consumption one period ahead relative to consump-

tion today is given by

P
(1)
Ct

Ct
= β = Et [exp(mt+1 + gC,t+1)] = exp

(
m̄+ ḡC +

1

2

(
(λC + σgC )

2 + λ2D + λ2X
))

. (45)

In equation 45, β does not depend on time so we omit the time subscript. Because this price

is constant over time, Assumption 1 of our simple valuation model is satisfied.

The gross one-period risk-free interest rate implied by this pricing kernel is also constant
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and given by

RRF =
1

Et [exp(mt+1)]
= exp

(
−m̄− 1

2

(
λ2C + λ2D + λ2X

))
.

The expected growth rate of the level of consumption is

Et [exp(gC,t+1)] = exp

(
ḡC +

1

2
σ2
gC

)
.

Observe that the expected return on a one-period consumption bond is

RC =
Et [exp(gC,t+1]Ct

P
(1)
Ct

=
exp

(
ḡC + 1

2
σ2
gC

)
β

Thus the expected return on a consumption bond in excess of the risk free rate is

RC −RRF = exp(−λCσgC )

Thus,

β =
Et [exp(gC,t+1)]

RC
=

Et [exp(gC,t+1)]

RRF + exp(−λcσgC )

As we have noted above, in the data, the risk free interest rate appears to be below the

expected growth rate of consumption. For us to have a finite value for the coefficient γX =

β/(1 − β), as is standard, we need to have a sufficiently large risk premium on a claim to

consumption as determined by exp(−λCσgC ).
We do not want to argue that these moments are all constant over time in the data. But

the fact that they are constant in our model allows us to transparently make the point that

it is possible to account for the observed volatility of stock prices based entirely on volatility

of expected cash flows. We leave to future work the project of extending our valuation

framework to richer models for consumption growth or for the pricing kernel under which

these data moments vary over time.

C.1 Pricing Dividends

We now turn to pricing claims to dividends. We assume that the dynamics of the ratio of

dividends per share to consumption are given by equations (6) and (7). Note that this model

departs from standard asset pricing formulations in that innovations to the ratio of dividends

to consumption are normal rather than log-normal. We now show how to compute prices

of claims to dividends and equity given the dynamics of the pricing kernel and consumption
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growth using Stein’s Lemma.

The prices of dividends relative to consumption satisfy the recursive formula that

P
(k)
D,t

Ct
= Et

[
exp(mt+1 + gCt+1)

P
(k−1)
D,t+1

Ct+1

]
(46)

We guess and verify that the price of a claim to dividends k periods ahead has the following

form:
P

(k)
Dt

Ct
= Ak

(
Dt

Ct
−Xt

)
+BkXt +Hk (47)

We solve for the coefficients Ak, Bk, and Hk recursively using equation 46 and the method

of undetermined coefficients as described in Appendix C.2. We show that the coefficients

Ak, Bk satisfy the recursion

Ak = βρAk−1 = (βρ)k

Bk = βBk−1 = βk

and the coefficients Hk satisfy

Hk = β (Hk−1 + λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

with H0 = 0.

Note that these coefficients are independent of date t. We can then construct the value

of a claim to equity as in equation (10) from

PDt
Ct

=
∞∑
k=1

P
(k)
Dt

Ct
= γD

(
Dt

Ct
−Xt

)
+ γXXt + ϕ,

where γD = βρ
1−βρ , γ

X = β
1−β , and ϕ =

∑∞
k=1Hk. Note that Hk and thus ϕ are constant over

time, so this affine model satisfies Assumption 2 of our valuation framework.

C.2 Solving for Ak, Bk, and Hk

The price for a claim to dividends in the current period is given by

P
(0)
Dt

Ct
=
Dt

Ct

so H0 = 0, A0 = B0 = 1.
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We have the following recursion for all other horizons k:

P
(k)
Dt

Ct
= Et

[
exp(mt+1 + gC,t+1)

P
(k−1)
D,t+1

Ct+1

]
. (48)

We use this to solve for Ak, Bk and Hk as follows.

This recursive equation implies that8

Ak

(
Dt

Ct
−Xt

)
+BkXt+Hk = Et [exp(mt+1 + gC,t+1)]

[
ρAk−1

(
Dt

Ct
−Xt

)
+Bk−1Xt +Hk−1

]
+

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]]

Matching coefficients on (Dt

Ct
−Xt) and Xt gives us that the coefficients Ak, Bk satisfy the

recursion

Ak = βρAk−1 = (βρ)k

Bk = βBk−1 = βk

To solve for the recursion for the constant term Hk, we need to solve for the term

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]]

To do so, we use the result that if x and y and z are independent standard normal random

variables and a, b, c, d are scalar constants, then

E [exp(ax+ by)(cx+ dz)] = ca exp((a2 + b2)/2) (49)

This formula is an application of Stein’s Lemma. We prove it in Appendix C.2.

This gives us that

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]] =

exp(m̄+ ḡC) exp

(
1

2
(λC + σgC )

2 +
1

2
(λ2D + λ2X)

)
(λDAk−1σD + λX(Bk−1 − Ak−1)σX) =

β (λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

8This equation is derived by substituting eq. (47) into the left-hand side of eq. (48) and again into the

right-hand side (this time evaluated at t+1 and k−1). Next we used eqs. (7) and (6) to express (Dt+1

Ct+1
−Xt+1)

and Xt+1 in terms of (Dt

Ct
−Xt) and Xt plus innovation terms.
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This result implies that we can solve for the coefficients Hk recursively from

Hk = β (Hk−1 + λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

C.3 Proof of Formula (49)

One can prove this formula by using the moment generating function for normal random

variables. In particular, we start by computing for a normal random variable

E exp(atx) = exp(atµ+
1

2
a2t2σ2).

We then have

Eax exp(atx) = E
d

dt
exp(atx) = exp(atµ+

1

2
a2t2σ2)(aµ+ ta2σ2).

If we evaluate this expression at t = 1 with µ = 0 and σ = 1 for a standard normal

distribution, we have

Eax exp(ax) = exp(
1

2
a2)a2.

We multiply by c/a to obtain

Ecx exp(ax) = exp(
1

2
a2)ca.

We then have

E exp(ax+ by)(cx+ dz) = E exp(by)Ecx exp(ax) + E exp(by)E exp(ax)Edz

by the independence of x, y and z. Finally, since Ez = 0 and E exp(by) = exp(1
2
b2), we get

equation (49).

D Spurious Regressions

Define

pLt = pt −
βρ

1− βρ
dt.

From the equilibrium pricing equation (10),

pLt = ϕt + Γxt.
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Thus, this price-dividend spread isolates the combined price impact of the trend component

of dividends xt and the residual component ϕt. Under the Dividends Hypothesis, ϕt = ϕ̄

and xt is a martingale. Thus, under the Dividends Hypothesis, changes in pLt should not be

predictable.

We here explore the exercise of forecasting changes in pLt with the level of pLt itself.

Specifically, we consider regressions of the form

pLt+s − pLt = αpL,s + γpL,s p
L
t + errorpL,t+s. (regression 7)

One might be tempted to interpret results from these regressions as a means of evaluating

the Dividends Hypothesis. Observe, however, that under the Dividends Hypothesis, xt is not

constant and non-stationary. Thus, regression 7 effectively explores whether non-stationary

xt can predict changes in xt+s−xt. As is well known, regressions of changes in a random walk

on its level can yield spurious regression estimates, where changes appear to be predictable

in sample even though the truth is that they are not.

For the sake of exploration, we run regression 7 despite the fact that the regression is

spurious under the Dividends Hypothesis. We find the results in Table D.1.

horizon s = 1 s = 5 s = 10 s = 15
γ̂pL,s -0.089419 -0.29457 -0.54201 -0.80954
S.E. (0.048319) (0.092106) ( 0.11771) ( 0.124)
t-Stat -1.8506 -3.1981 -4.6047 -6.5285
R2 0.0359 0.104 0.203 0.353

Table D.1: Results from regressions of the form in regression 7.

A naive interpretation of these regression results would be that they indicate the presence

of a large transitory component in the valuation statistic pLt , in contradiction to the Dividends

Hypothesis.

We instead interpret these findings as an artifact of running spurious regressions. To

demonstrate this observation, we Monte Carlo artificial data for xt with 95 observations

constructed as a random walk with standard normal innovations and then run regressions

of the form in regression 7 replacing pLt with our artificial series for xt. In Figures D.1 and

D.2 we show the simulated histograms of parameter estimates γ̂pL,s from these regressions

at horizons s = 1, 5, 10, and 15. These figures illustrate that the point estimates γ̂pL,s in

Table D.1 are well within the range of what one would expect from such regressions under

the Dividends Hypothesis. Thus, we do not see these regression results as having any bearing

on the validity of that hypothesis.
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Figure D.1: Histograms of estimated slope coefficients γ̂pL,s from regression 7 under the
assumption that pLt is a random walk with standard normal innovations with a sample of
length 95. Left panel: Estimates γ̂pL,s for s = 1. Right panel: Estimates γ̂pL,s for s = 5.
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Figure D.2: Histograms of estimated slope coefficients γ̂pL,s from regression 7 under the
assumption that pLt is a random walk with standard normal innovations with a sample of
length 95. Left panel: Estimates γ̂pL,s for s = 10. Right panel: Estimates γ̂pL,s for s = 15.

E Calculations for the Second Model of log(dt)

In this section of the Appendix we present details of calculations referred to in the text

Section 7.
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E.1 Connection to Simple Long Run Risks Model

We now show how to map a simple Long-Run Risks Model with persistent shocks to the

expected growth rate of log dividends into the framework of our second model. To do so,

we construct the Beveridge-Nelson decomposition of the dynamics of log dividends in such a

model.

To start, define

∆ log(dt+1) = log(dt+1)− log(dt)

Let the process for the stationary dynamics of dividend growth be driven by a latent

variable zt that follows an AR1. That is, let

∆ log(dt+1) = zt+1 + ϵd,t+1

with

zt+1 = ρzzt + ϵz,t+1

Recall that we define the Beveridge-Nelson trend of log dividends as xt = limK→∞ Etdt+K
with perhaps some adjustment for a deterministic trend. For simplicity, we do not include

such a trend here.

We then have

Et∆ log(dt+s) = ρszzt

and

Et log(dt+K) = log(dt) +
K∑
s=1

ρszzt

This calculation gives us a Beveridge-Nelson trend for log dividends

log(xt) ≡ lim
K→∞

Et log(dt+K) = log(dt) +
ρz

1− ρz
zt

and a transitory component

(log(dt)− log(xt)) = − ρz
1− ρz

zt

Note that we can confirm that Et log(xt+1) = xt by computing

Et log(xt+1)− log(xt) = Et log(dt+1)− log(dt) +

(
ρz

1− ρz

)
(Etzt+1 − zt) =

ρzzt +
ρz

1− ρz
(ρz − 1)zt = 0
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Note that this model has the property that the transitory component of log dividends

log(dt)− log(xt) follows an AR1 process and the trend component log(xt) follows a random

walk.

E.2 Solving for Jk

We have that for k = 0, J0 = 0 by definition and the Jk satisfies the recursion implied by the

law of iterated expectations for k ≥ 1

Etdt+k = EtEt+1dt+k.

Using the form of our guess for Etdt+k above, we have

exp(ρk log(yt) + log(xt) + Jk) = Et exp(ρk−1 log(yt+1) + log(xt+1) + Jk−1) =

Et exp(ρk log(yt) + ρk−1ϵd,t+1 + log(xt) + ϵx,t+1 + Jk−1).

Cancelling the terms exp(ρk log(yt) + log(xt)) gives

exp(Jk) = exp(Jk−1)Et exp(ρk−1ϵd,t+1 + ϵx,t+1) =

exp

(
Jk−1 +

1

2
(ρ2)k−1σ2

d +
1

2
σ2
x + ρk−1ρdxσdσx

)
.

E.3 Derivation of Equation (32)

With strictly positive dividends dt, we can write realized returns on the fundamental price

as

R⋆
t+1 ≡

p⋆t+1/dt+1 + 1

p⋆t/dt

dt+1

dt

Taking logs gives

log(R⋆
t+1) = log

(
p⋆t+1/dt+1 + 1

)
− log (p⋆t/dt) + log(dt+1)− log(dt)

As is standard, we have the first order approximation to realized log returns on the funda-

mental price taken around a point at which dt = xt that

log(R⋆
t+1) ≈ − log(β) + β

[(
log(p⋆t+1)− log(dt+1)

)
− log(β) + log(1− β)

]
−

(log(p⋆t )− log(dt)) + log(dt+1)− log(dt)
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Define a constant

log(R̄) = − log(β) + β (log(1− β)− log(β))

We then have the approximation holding for all future realizations of the data

log(p⋆t )− log(dt) = log(dt+1)− log(dt)−
(
log(R⋆

t+1)− log(R̄)
)
+ β

(
log(p⋆t+1)− log(dt+1)

)
We can iterate on this formula to get

log(p⋆t )− log(dt) =
s−1∑
k=0

βk (log(dt+k+1)− log(dt+k))−

s−1∑
k=0

βk
(
log(R⋆

t+k+1)− log(R̄)
)
+ βs

(
log(p⋆t+s)− log(dt+s)

)
We directly define approximate long horizon log returns on the fundamental price as

log(R⋆
t,t+s) ≡

s−1∑
k=0

βk
(
log(R⋆

t+k+1)− log(R̄)
)

We report return forecasting regressions using this log-linear approximation to returns as

the dependent variable and log(pTt ) as the independent variable in Table E.1

horizon s = 1 s = 5 s = 10 s = 15
γ̂R⋆,s -0.0023671 -0.013212 -0.004707 -0.016221
S.E. ( 0.018924) ( 0.031822) (0.041022) ( 0.046794)
t-Stat -0.12509 -0.41518 -0.11474 -0.34664
R2 0.00017 0.00195 0.000159 0.00154

Table E.1: Estimates from regressions of the form in regression 4 using the log-linear approx-
imation to log returns on the fundamental price as the dependent variable with β = 80/81
and ϕ̄ = −0.9.
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