Optimal Tax Progressivity: An Analytical Framework

Jonathan Heathcote

Federal Reserve Bank of Minneapolis

Kjetil Storesletten

Oslo University and Federal Reserve Bank of Minneapolis

Gianluca Violante

New York University

Motivation

The hardest thing in the world to understand is income taxes.

(Albert Einstein)

- Argument in favor of progressivity: missing markets
 - Social insurance of privately-uninsurable lifecycle shocks
 - Redistribution with respect to unequal initial conditions

- Argument in favor of progressivity: missing markets
 - Social insurance of privately-uninsurable lifecycle shocks
 - Redistribution with respect to unequal initial conditions
- Argument I against progressivity: distortions
 - Labor supply
 - Human capital investment

- Argument in favor of progressivity: missing markets
 - Social insurance of privately-uninsurable lifecycle shocks
 - Redistribution with respect to unequal initial conditions
- Argument I against progressivity: distortions
 - Labor supply
 - Human capital investment
- Argument II against progressivity: externality
 - Financing of public good provision

- Model ingredients:
 - 1. partial insurance against labor-income risk [ex-post heter.]
 - 2. differential diligence & (learning) ability [ex-ante heter.]

- Model ingredients:
 - 1. partial insurance against labor-income risk [ex-post heter.]
 - 2. differential diligence & (learning) ability [ex-ante heter.]
 - 3. flexible labor supply
 - 4. endogenous skill investment + multiple-skill technology

- Model ingredients:
 - 1. partial insurance against labor-income risk [ex-post heter.]
 - 2. differential diligence & (learning) ability [ex-ante heter.]
 - 3. flexible labor supply
 - 4. endogenous skill investment + multiple-skill technology
 - 5. government expenditures valued by households

- Model ingredients:
 - 1. partial insurance against labor-income risk [ex-post heter.]
 - 2. differential diligence & (learning) ability [ex-ante heter.]
 - 3. flexible labor supply
 - 4. endogenous skill investment + multiple-skill technology
 - 5. government expenditures valued by households
- Ramsey approach: mkt structure & tax instruments taken as given

- Model ingredients:
 - 1. partial insurance against labor-income risk [ex-post heter.]
 - 2. differential diligence & (learning) ability [ex-ante heter.]
 - 3. flexible labor supply
 - 4. endogenous skill investment + multiple-skill technology
 - 5. government expenditures valued by households
- Ramsey approach: mkt structure & tax instruments taken as given

 \rightarrow closed-form Social Welfare Function

TAX/TRANSFER FUNCTION

The tax/transfer function

$$y - T(y) = \lambda y^{1-\tau}$$

• The parameter τ measures the degree of progressivity:

•
$$\tau = 1$$
: full redistribution $\rightarrow T(y) = y - \lambda$

►
$$0 < \tau < 1$$
: progressivity $\rightarrow T'(y) > \frac{T(y)}{y}$

•
$$\tau = 0$$
: no redistribution $\rightarrow T'(y) = \frac{T(y)}{y} = 1 - \lambda$

• $\tau < 0$: regressivity $\rightarrow T'(y) < \frac{T(y)}{y}$

• Break-even income level: $y^0 = \lambda^{\frac{1}{\tau}}$

The tax/transfer function

$$y - T(y) = \lambda y^{1-\tau}$$

• The parameter τ measures the degree of progressivity:

•
$$\tau = 1$$
: full redistribution $\rightarrow T(y) = y - \lambda$

•
$$0 < \tau < 1$$
: progressivity $\rightarrow T'(y) > \frac{T(y)}{y}$

•
$$\tau = 0$$
: no redistribution $\rightarrow T'(y) = \frac{T(y)}{y} = 1 - \lambda$

• $\tau < 0$: regressivity $\rightarrow T'(y) < \frac{T(y)}{y}$

• Break-even income level: $y^0 = \lambda^{\frac{1}{\tau}}$

Restrictions: (i) no lump-sum transfer & (ii) T'(y) monotone

Measurement of au^{US}

- PSID 2000-06, age of head of hh 25-60, N = 12,943
- Pre gov. income: income minus deductions (medical expenses, state taxes, mortgage interest and charitable contributions)
- Post-gov income: ... minus taxes (TAXSIM) plus transfers

Measurement of au^{US}

- PSID 2000-06, age of head of hh 25-60, N = 12,943
- Pre gov. income: income minus deductions (medical expenses, state taxes, mortgage interest and charitable contributions)
- Post-gov income: ... minus taxes (TAXSIM) plus transfers

Model

Demographics and preferences

- Perpetual youth demographics with constant survival probability δ
- Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u_i(c_{it}, h_{it}, G)$$

Demographics and preferences

- Perpetual youth demographics with constant survival probability δ
- Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_{i} = -v_{i}(s_{i}) + \mathbb{E}_{0} \sum_{t=0}^{\infty} (\beta \delta)^{t} u_{i}(c_{it}, h_{it}, G)$$

$$v_{i}(s_{i}) = \frac{1}{(\kappa_{i})^{1/\psi}} \cdot \frac{s_{i}^{1+1/\psi}}{1+1/\psi}$$

$$\kappa_{i} \sim Exp(1)$$

$$u_{i}(c_{it}, h_{it}, G) = \log c_{it} - \exp(\varphi_{i}) \frac{h_{it}^{1+\sigma}}{1+\sigma} + \chi \log G$$

$$\varphi_{i} \sim \mathcal{N}\left(\frac{v_{\varphi}}{2}, v_{\varphi}\right), \quad \varphi_{i} \perp \kappa_{i}$$

Technology

• Aggregate effective hours by skill type:

$$N(s) = \int_0^1 \mathbb{I}_{\{s_i=s\}} z_i h_i \, di$$

• Output is a CES aggregator over continuum of skill types:

$$Y = \left[\int_{0}^{\infty} N(s)^{\frac{\theta-1}{\theta}} ds\right]^{\frac{\theta}{\theta-1}}, \quad \theta \in (1,\infty)$$

• Determination of skill price: p(s) = MPN(s)

• Aggregate resource constraint:

$$Y = \int_0^1 c_i \, di + G$$

Individual efficiency units of labor

 $\log z_{it} = \alpha_{it} + \varepsilon_{it}$

- $\alpha_{it} = \alpha_{i,t-1} + \omega_{it}$ with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)$ [permanent] + • ε_{it} i.i.d. over time with $\varepsilon_{it} \sim \mathcal{N}\left(-\frac{v_{\varepsilon}}{2}, v_{\varepsilon}\right)$ [transitory]
- $\omega_{it} \perp \varepsilon_{it}$ cross-sectionally and longitudinally

Individual efficiency units of labor

 $\log z_{it} = \alpha_{it} + \varepsilon_{it}$

- $\alpha_{it} = \alpha_{i,t-1} + \omega_{it}$ with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)$ [permanent] +
- ε_{it} i.i.d. over time with $\varepsilon_{it} \sim \mathcal{N}\left(-\frac{v_{\varepsilon}}{2}, v_{\varepsilon}\right)$ [transitory]
- $\omega_{it} \perp \varepsilon_{it}$ cross-sectionally and longitudinally
- Pre-government earnings:

$$y_{it} = \underbrace{p(s_i)}_{\text{skill price}} \times \underbrace{\exp(\alpha_{it} + \varepsilon_{it})}_{\text{efficiency}} \times \underbrace{h_{it}}_{\text{hours}}$$

determined by skill, fortune, and diligence

Government

• Government budget constraint (no government debt):

$$G = \int_0^1 \left[y_i - \lambda y_i^{1-\tau} \right] di$$

• Government chooses (G, τ) , and λ balances the budget residually

• Without loss of generality, we let the government choose:

$$g \equiv \frac{G}{Y}$$

Market structure

- Final good (numeraire) market and labor markets are competitive
- Perfect annuity markets against survival risk

Market structure

- Final good (numeraire) market and labor markets are competitive
- Perfect annuity markets against survival risk
- Full set of insurance claims against ε shocks
- No market to insure ω shock [microfoundation with bond]

Market structure

- Final good (numeraire) market and labor markets are competitive
- Perfect annuity markets against survival risk
- Full set of insurance claims against ε shocks
- No market to insure ω shock [microfoundation with bond]

 $\blacksquare v_{\varepsilon} > 0, v_{\omega} > 0 \rightarrow \text{partial insurance economy}$

 $\blacksquare v_{\omega} = 0 \rightarrow$ full insurance economy

$$\blacksquare v_{\omega} = v_{\varepsilon} = v_{\varphi} = 0 \quad \& \quad \theta = \infty \to \mathsf{RA} \text{ economy}$$

Special case: representative agent economy

$$\max_{C,H} U = \log C - \frac{H^{1+\sigma}}{1+\sigma} + \chi \log gY$$

s.t.
$$C = \lambda Y^{1-\tau}$$

$$Y = H$$

$$C+G = Y$$

Special case: representative agent economy

$$\max_{C,H} U = \log C - \frac{H^{1+\sigma}}{1+\sigma} + \chi \log gY$$

s.t.
$$C = \lambda Y^{1-\tau}$$

$$Y = H$$

$$C+G = Y$$

• Substitute equilibrium allocations into *U* to obtain:

$$\mathcal{W}^{RA}(g,\tau) = \log(1-g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{1+\sigma} - \frac{1-\tau}{1+\sigma}$$

• Ramsey planner chooses (g, τ) to maximize \mathcal{W}^{RA}

Optimal policy in the RA economy

$$g^* = \frac{\chi}{1+\chi}$$

- Samuelson condition: $MRS_{C,G} = MRT_{C,G} = 1$
- This result will extend to the general model

Optimal policy in the RA economy

$$g^* = \frac{\chi}{1+\chi}$$

- Samuelson condition: $MRS_{C,G} = MRT_{C,G} = 1$
- This result will extend to the general model

 $\tau^* = -\chi$

- Regressivity corrects the externality linked to valued G
- Allocations are first best, i.e., same as with lump-sum taxation

• Skill price has Mincerian shape: $\log p(s;\tau) = \pi_0(\tau) + \pi_1(\tau)s(\kappa;\tau)$

$$s(\kappa;\tau) = \left(\frac{1-\tau}{\theta}\right)^{\frac{\psi}{1+\psi}} \cdot \kappa$$

skill choice

$$\pi_1(\tau) = \left(\frac{1}{\theta}\right)^{\frac{1}{1+\psi}} (1-\tau)^{-\frac{\psi}{1+\psi}}$$

marginal return to skill

• Skill price has Mincerian shape: $\log p(s;\tau) = \pi_0(\tau) + \pi_1(\tau)s(\kappa;\tau)$

$$s(\kappa;\tau) = \left(\frac{1-\tau}{\theta}\right)^{\frac{\psi}{1+\psi}} \cdot \kappa \qquad \text{skill choice}$$
$$\pi_1(\tau) = \left(\frac{1}{\theta}\right)^{\frac{1}{1+\psi}} (1-\tau)^{-\frac{\psi}{1+\psi}} \qquad \text{marginal res}$$

marginal return to skill

- **Direct effect:** τ reduces skill accumulation
- Equilibrium (Stiglitz) effect: τ raises skill premium through scarcity

Neutrality
$$\rightarrow var(\log p(s; \tau)) = \frac{1}{\theta^2}$$

• Skill price has Mincerian shape: $\log p(s;\tau) = \pi_0(\tau) + \pi_1(\tau)s(\kappa;\tau)$

$$s(\kappa;\tau) = \left(\frac{1-\tau}{\theta}\right)^{\frac{\psi}{1+\psi}} \cdot \kappa \qquad \text{skill choice}$$
$$\pi_1(\tau) = \left(\frac{1}{\theta}\right)^{\frac{1}{1+\psi}} (1-\tau)^{-\frac{\psi}{1+\psi}} \qquad \text{marginal return to skill}$$

- Direct effect: τ reduces skill accumulation
- Equilibrium (Stiglitz) effect: τ raises skill premium through scarcity

Neutrality
$$\rightarrow var(\log p(s; \tau)) = \frac{1}{\theta^2}$$

• Distribution of skill prices p is Pareto with parameter θ

Equilibrium consumption and hours allocation

$$\log c(\alpha, \varphi, s; g, \tau) = \log C^{RA}(g, \tau) + \underbrace{(1 - \tau) \log p(s; \tau)}_{\text{skill price}}$$

Equilibrium consumption and hours allocation

SOCIAL WELFARE FUNCTION

Social Welfare Function

Economy is in steady-state with pair (g_{-1}, τ_{-1})

```
Planner chooses, once and for all, a new pair (g^*, \tau^*)
```

We make two assumptions:

- 1. Planner puts equal weight on all currently alive agents, discounts U of future cohorts at rate β
- 2. Skill investments are reversible

Social Welfare Function

Economy is in steady-state with pair (g_{-1}, τ_{-1})

```
Planner chooses, once and for all, a new pair (g^*, \tau^*)
```

We make two assumptions:

- 1. Planner puts equal weight on all currently alive agents, discounts U of future cohorts at rate β
- 2. Skill investments are reversible
 - ► SWF becomes average period-utility in the cross-section
 - $\blacktriangleright \tau^*$ does not depend on the pre-existing skill distribution
 - ► The transition to the new steady-state is instantaneous

Exact expression for SWF

$$\begin{aligned} \mathcal{W}(g,\tau) &= \log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} - 1 \log(1-\tau) \\ &- \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} (1-\tau) - \left[-\log\left(1 - \left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right) \right] \\ &- (1-\tau)^2 \frac{v_{\varphi}}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_{\omega}}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v_{\omega}\right)}{1-\delta}\right) \right] \\ &+ (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} - (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} \end{aligned}$$

Representative Agent component

$$\begin{split} \mathcal{W}(g,\tau) &= \underbrace{\log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})}}_{\text{Representative Agent Welfare} = \mathcal{W}^{RA}(g,\tau)} \\ &+ (1+\chi) \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta-1} \log (1-\tau) \\ &- \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} (1-\tau) - \left[-\log\left(1 - \left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right) \right] \\ &- (1-\tau)^2 \frac{v_{\varphi}}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_{\omega}}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v_{\omega}\right)}{1-\delta}\right) \right] \\ &+ (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} - (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} \end{split}$$

Exact expression for $\mathsf{SWF}(\tau)$

$$\begin{aligned} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta-1} \log(1-\tau) \\ &- \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} (1-\tau) - \left[-\log\left(1 - \left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right) \right] \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_\omega}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v_\omega\right)}{1-\delta}\right) \right] \\ &+ (1+\chi) \frac{1}{\hat{\sigma}} v_\varepsilon - (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} \end{aligned}$$

Skill investment component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \underbrace{\left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta-1} \log(1-\tau)}_{\text{productivity gain} = \log E\left[(p(s))\right] = \log\left(Y/N\right)} \\ &\underbrace{-\left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta}(1-\tau)}_{\text{avg. education cost}} - \underbrace{\left[-\log\left(1-\left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right)\right]}_{\text{consumption dispersion across skills}} \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_\omega}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v_\omega\right)}{1-\delta}\right)\right] \\ &+ (1+\chi) \frac{1}{\hat{\sigma}} v_\varepsilon - (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} \end{split}$$

Skill investment component

Skill investment component

• Diamond-Saez formula for top marginal rate: $\overline{t} = \frac{1+\sigma}{\theta+\sigma}$

• Lower θ : thicker Pareto tail in y dist. \rightarrow more redistribution

• Our model: endogenous skill accumulation

• Lower θ : strong skill complementarity \rightarrow more skill investment

Uninsurable component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta-1} \log(1-\tau) \\ &- \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} (1-\tau) - \left[-\log\left(1 - \left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right) \right] \\ &- \underbrace{(1-\tau)^2 \frac{v\varphi}{2}}_{\text{cons. disp. due to prefs.}} \\ &- \underbrace{\left[(1-\tau) \frac{\delta}{1-\delta} \frac{v\omega}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v\omega\right)}{1-\delta}\right) \right]}_{\text{consumption dispersion due to uninsurable shocks \approx} (1-\tau)^2 \frac{v\alpha}{2} \\ &+ (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} - (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} \end{split}$$

Heathcote-Storesletten-Violante, "Optimal Tax Progressivity"

Insurable component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})(1-\tau)} \\ &+ (1+\chi) \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta-1} \log(1-\tau) \\ &- \left(\frac{\psi}{1+\psi}\right) \frac{1}{\theta} (1-\tau) - \left[-\log\left(1 - \left(\frac{1-\tau}{\theta}\right)\right) - \left(\frac{1-\tau}{\theta}\right) \right] \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_\omega}{2} - \log\left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2}v_\omega\right)}{1-\delta}\right) \right] \\ &+ (1+\chi) \qquad \frac{1}{\hat{\sigma}} v_\varepsilon \\ &- (1+\chi)\sigma \quad \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} \\ &\text{prod. gain from ins. shock} = \log(N/H) \end{split}$$

QUANTITATIVE IMPLICATIONS

• Parameter vector $\{\chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$

- Parameter vector $\{\chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$
- Assume observed $G/Y = 0.19 = g^* \rightarrow \chi = 0.233$
- Frisch elasticity (micro-evidence ~ 0.5) $\rightarrow \sigma = 2$

- Parameter vector $\{\chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$
- Assume observed $G/Y = 0.19 = g^* \qquad \rightarrow \chi = 0.233$
- Frisch elasticity (micro-evidence ~ 0.5) $\rightarrow \sigma = 2$
- Price-elasticity of skill investment $ightarrow \psi = 0.65$

- Parameter vector $\{\chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$
- Assume observed $G/Y = 0.19 = g^*$ $\rightarrow \chi = 0.233$
- Frisch elasticity (micro-evidence ~ 0.5) $\rightarrow \sigma = 2$
- Price-elasticity of skill investment $ightarrow \psi = 0.65$

$$\begin{aligned} \cos(\log h, \log w) &= \frac{1}{\hat{\sigma}} v_{\varepsilon} \\ var(\log h) &= v_{\varphi} + \frac{1}{\hat{\sigma}^2} v_{\varepsilon} \\ var^0(\log c) &= (1 - \tau)^2 \left(v_{\varphi} + \frac{1}{\theta^2} \right) \\ var(\log w) &= \frac{1}{\theta^2} + \frac{\delta}{1 - \delta} v_{\omega} + v_{\varepsilon} \end{aligned}$$

- Parameter vector $\{\chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$
- Assume observed $G/Y = 0.19 = g^* \qquad \rightarrow \chi = 0.233$
- Frisch elasticity (micro-evidence ~ 0.5) $\rightarrow \sigma = 2$
- Price-elasticity of skill investment $ightarrow \psi = 0.65$

$$cov(\log h, \log w) = \frac{1}{\hat{\sigma}} v_{\varepsilon} \longrightarrow v_{\varepsilon} = 0.17$$

$$var(\log h) = v_{\varphi} + \frac{1}{\hat{\sigma}^2} v_{\varepsilon} \longrightarrow v_{\varphi} = 0.035$$

$$var^0(\log c) = (1 - \tau)^2 \left(v_{\varphi} + \frac{1}{\theta^2} \right) \longrightarrow \theta = 3.12$$

$$var(\log w) = \frac{1}{\theta^2} + \frac{\delta}{1 - \delta} v_{\omega} + v_{\varepsilon} \longrightarrow v_{\omega} = 0.003$$

Optimal progressivity

Actual and optimal progressivity

Income-weighted average marginal: down from 32% to 26%

If you believe that...

• *G* does not yield any utility $(\chi = 0)$:

► $\tau^* = 0.20$ \rightarrow y-weighted average MTR: 36 pct

If you believe that...

• G does not yield any utility $(\chi = 0)$:

• $\tau^* = 0.20 \rightarrow$ y-weighted average MTR: 36 pct

• All uninsurable wage ineq. due to exogenous shocks $(\theta = \infty)$

• $\tau^* = 0.21 \rightarrow$ y-weighted average MTR: 37 pct

If you believe that...

• G does not yield any utility $(\chi = 0)$:

• $\tau^* = 0.20 \rightarrow$ y-weighted average MTR: 36 pct

• All uninsurable wage ineq. due to exogenous shocks $(\theta = \infty)$

• $\tau^* = 0.21 \rightarrow$ y-weighted average MTR: 37 pct

• All uninsurable wage ineq. is due to endogenous choices $(v_{\omega} = 0)$

► $\tau^* = 0.06$ \rightarrow y-weighted average MTR: 24 pct

EXTENSIONS

Role of weight on future vs. current cohorts

Role of weight on future vs. current cohorts

Lower weight \rightarrow more concern for current inequality and redistribution

Irreversible skill investment

Irreversible skill investment

• Progressivity does not distort sunk skill inv. of existing cohorts

Irreversible skill investment

- Progressivity does not distort sunk skill inv. of existing cohorts
- As weight \rightarrow 1, (ir)-reversibility does not matter

Age-dependent progressivity

- Give the planner ability to index the pair (λ, τ) on individual age a
- Link with dynamic Mirrlees approach: age-dependent tax scheme realizes most of gains from fully history-dependent tax reform

Age-dependent progressivity

- Give the planner ability to index the pair (λ, τ) on individual age a
- Link with dynamic Mirrlees approach: age-dependent tax scheme realizes most of gains from fully history-dependent tax reform
- Three results:
 - Optimal public good provision g^* is unchanged
 - The sequence $\{\lambda_a^*, \tau_a^*\}$ is independent of age iff $v_\omega = 0$
 - With $v_{\omega} > 0$, the sequence $\{\lambda_a^*, \tau_a^*\}$ is strictly increasing in *a*

Age-dependent progressivity

Welfare gains from making τ^* age dependent near 5%!
- 1. The endogeneity of the skill distribution limits optimal progressivity
 - Key: skill-complementarity in production (θ), price-elasticity of skill investment (ψ), alterability of past skill choices

- 1. The endogeneity of the skill distribution limits optimal progressivity
 - Key: skill-complementarity in production (θ), price-elasticity of skill investment (ψ), alterability of past skill choices
- 2. The externality in the provision of public goods limits progressivity
 - Low progressivity induces higher labor supply, output, and G

- 1. The endogeneity of the skill distribution limits optimal progressivity
 - Key: skill-complementarity in production (θ), price-elasticity of skill investment (ψ), alterability of past skill choices
- 2. The externality in the provision of public goods limits progressivity
 - Low progressivity induces higher labor supply, output, and G
- 3. Age-dependent progressivity delivers large welfare gains
 - Low progressivity at young ages induces skill investment
 - High progressivity at old ages redistributes against shocks

Inequality aversion

- Utilitarian planner: equal concern for redistributing across individuals and for insuring consumption fluctuations over time
- New inequality aversion parameter $\nu \in (0,\infty)$ to vary the strength of the concern for redistribution

Inequality aversion

- Utilitarian planner: equal concern for redistributing across individuals and for insuring consumption fluctuations over time
- New inequality aversion parameter $\nu \in (0,\infty)$ to vary the strength of the concern for redistribution

u	Planner	$ au^*$
$\rightarrow 0$	Rawlsian	1.0
1	Utilitarian	0.084
$\rightarrow \infty$	Inequality-neutral	-0.159

Inequality aversion

- Utilitarian planner: equal concern for redistributing across individuals and for insuring consumption fluctuations over time
- New inequality aversion parameter $\nu \in (0,\infty)$ to vary the strength of the concern for redistribution

ν	Planner	$ au^*$
$\rightarrow 0$	Rawlsian	1.0
1	Utilitarian	0.084
$ ightarrow\infty$	Inequality-neutral	-0.159

• Planner only concerned with consumption insurance $(\nu \rightarrow \infty)$ choosess an income-weighted average marginal tax rate of 6%