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1. Solving systems of stochastic linear difference equations (see
Farmer’s book)

1.1. Example of a first order stochastic difference equation.

xt+1 = b+ axt + εt+1

ε is a random variable.
Conditions for stationary distribution of x

(i) |a| < 1
(ii) ε drawn from an invariant probability distribution

Solution to the model is a sequence of probability distributions {Gt(· | x0)}∞t=1
1.2. Simple application: a stochastic version of the Solow growth model.
Equations describing the model:

Yt = ztF (Kt, Nt) (1)

Nt = γtN

Kt+1 = (1− δ)Kt + Yt − Ct (2)

Ct = (1− s)Yt (3)

zt+1 = (1− ρ) + ρzt + εt+1 ε˜N(0, σ2) (4)

z0, K0, N0 given

1. Rewrite in terms of stationary variables. Divide 1, 2 and 3 by Nt, and for any
variable x let xt = Xt

Nt

yt = ztF (kt, 1) = ztf(kt) (assuming F is homogenous of degree one)

γkt+1 = (1− δ)kt + yt − ct

ct = (1− s)yt

1



Introduction to Linearization Methods 2

2. Compute the (non-stochastic) steady state

y∗ = z∗f(k∗)

z∗ = (1− ρ) + ρz∗

γk∗ = (1− δ)k∗ + y∗ − c∗

c∗ = (1− s)y∗

3. Linearize around the steady state (take a first order Taylor series expansion)

yt − y∗ = z∗f 0(k∗) (kt − k∗) + f(k∗)(zt − z∗)

zt+1 − z∗ = ρ(zt − z∗) + εt+1 ε˜N(0, σ2)

γ(kt+1 − k∗) = (1− δ) (kt − k∗) + (yt − y∗)− (ct − c∗)

ct − c∗ = (1− s)(yt − y∗)

1.3. Review of some useful linear algebra. Definition of eigenvalues and
eigenvectors
Consider an n× n matrix A that maps Rn into Rn.
The roots of A are the n solutions λ1...λn to the equation

AY = λY

where each element of λ is a scalar and each Y is an eigenvector. There will gen-
erally be n different eigenvalues λ1...λn and n different eigenvectors Y1...Yn, each
corresponding to a particular eigenvalue.
Suppose n = 2. Then the two eigenvectors Y a and Y b are straight lines through

the origin in the two dimensional Cartesian plane (Y1, Y2) such that if the initial state
of the system Yt = (y1,t, y2,t) lies on one the eigenvectors (say Y a) then the state next
period is (by definition) given by

Yt+1 = AYt = λaYt

Now, AY = λY implies (A − λI)Y = 0. This has a non-zero solution only if
(A − λI) is singular or has a zero determinant (one column of A − λI is a scalar
multiple of the other).
Thus the eigenvalues can be computed by solving the polynomial

|A− λI| = 0
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Of course, there is a gauss command that will return all the eigenvectors and
eigenvalues of any matrix, so we do not really need to worry about how to solve for
them. The command is eigv.
The eigenvalues of a system determine the set of initial conditions, if any, under

which the system is stable (see below). For example, suppose in a two dimensional
system, one eigenvalue is greater than one in absolute value, and one is less than one.
This means that the equilibrium exhibits a saddle-path property; the system will be
stable for initial conditions that begin on the eigenvector associated with the stable
eigenvalue.

1.4. Diagonalization: a nonstochastic example.. Suppose Yt has dimension
n× 1.

Yt = b+AYt−1

Create an n× n matrix (Q) containing the n eigenvectors of A.
Create another n×n matrix Λ containing the n eigenvalues of A on the diagonal.

Q =


Y1(1) Y2(1) ... Yn(1)
Y1(2) Y2(2) Yn(2)
. . . .

Y1(n) Y2(n) Yn(n)

 and Λ =


λ1 0 ... 0
0 λ2 0
. . . .
0 0 λn

 .
By definition

AQ = QΛ

Once we have computed Q and Λ take the equation

Yt = b+AYt−1

and pre-multiply by Q−1

Q−1Yt = Q−1b+Q−1AYt−1

which can be more usefully rewritten as

Q−1Yt = Q−1b+ ΛQ−1Yt−1

Let Zt = Q−1Yt.
Zt = Q−1b+ ΛZt−1

The beauty of this description of the system is that the n equations are now all
independent since Λ is a diagonal matrix.
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1.5. The stochastic optimal growth / real business cycle model.

max
{ct}

Et

" ∞X
t=0

βtu(ct)

#

subject to
ct + kt+1 ≤ (1− δ)kt + eztkαt

zt+1 = ρzt + εt+1

Suppose that innovations to the productivity process (εt+1) are iid with mean 0
and variance σ2.

1. Write down the first order conditions, putting variables dated t+ 1 on the left
hand side (except the innovation term εt+1)

βEt

£
u0(ct+1)

¡
1− δ + αezt+1kα−1t+1

¢¤
= u0(ct)

kt+1 = (1− δ)kt + eztkαt − ct

zt+1 = ρzt + εt+1

2. Solve for the steady state with σ2 = 0

β
£
u0(c∗)

¡
1− δ + αez

∗
k∗α−1

¢¤
= u0(c∗)

k∗ = (1− δ)k∗ + ez
∗
k∗α − c∗

z∗ = ρz∗

These are three non-linear equations in three unknowns, k∗, c∗ and z∗.

3. Take a first order Taylor series approximation of our three equations around
the steady state vector x∗ = {c∗, k∗, z∗}. Recall that (for x close to x∗)

F (x) ≈ F (x∗) +DF (x∗)(x− x∗)

Depending on functional forms it may be possible to compute partial derivatives
analytically: if it is not possible there is no harm doing in numerically - the
gauss command is gradp.
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4. Let ψij denote the partial derivative evaluated at the steady state of the left
hand side of the ith equation with respect to j where j = c, k or z, and φij denote
the same thing for the right hand side. For any variable y, let by = yt − y∗. To
a first order approximation we can write

Et

h
ψ1cbct+1 + ψ1kbkt+1 + ψ1zbzt+1i = φ1cbct + φ1kbkt + φ1zbzt

ψ2cbct+1 + ψ2kbkt+1 + ψ2zbzt+1 = φ2cbct + φ2kbkt + φ2zbzt
ψ3cbct+1 + ψ3kbkt+1 + ψ3zbzt+1 = φ3cbct + φ3kbkt + φ3zbzt + εt+1

In this particular example, a lot of the partial derivatives are zero, and others
are easy to compute analytically.

ψ =

 βu00(c∗)
¡
1− δ + αez

∗
k∗(α−1)

¢
βu0(c∗)α (α− 1) ez∗k∗(α−2) βu0(c∗)αez

∗
k∗(α−1)

0 1 0
0 0 1


and

φ =

 u00(c∗) 0 0
−1 (1− δ) + αez

∗
k∗α−1 ez

∗
k∗α

0 0 ρ

 .

(note that bεt+1 = εt+1 since ε∗ = 0).

1. Note that

Et [ψbxt+1] = ψEt [bxt+1] = ψbxt+1 + ψ (Et [bxt+1]− bxt+1)
= ψbxt+1 + ψbωt+1

Thus we can write the linearized system of equations as

ψbxt+1 + Jbωt+1 = φbxt + brt+1
where

bωt+1 =

dωc

ωk

ωz


t+1

, brt+1 =
c00

ε


t+1

, J =

 ψ11 ψ12 ψ13
0 0 0
0 0 0


or equivalently

ψbxt+1 = φbxt + bft+1
where bft+1 =

 −ψ1bωt+1

0bεt+1

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1. Invert ψ, and premultiply through by ψ−1. (For some systems ψ will not be
invertible - see next week’s notes).

bxt+1 = ψ−1φbxt + ψ−1 bft+1
Let A = ψ−1φ. bxt+1 = Abxt + ψ−1 bft+1

2. Compute the eigenvectors and eigenvalues of A and stack them up in a matrices
Q and Λ. As before,

AQ = QΛ

3. Invert Q and pre-multiply by Q−1.

Q−1bxt+1 = ΛQ−1bxt +Q−1ψ−1 bft+1
Let byt = Q−1bxt byt+1 = Λbyt +Q−1ψ−1 bft+1
Now we have successfully disentangled the system so that we can write the three
equations independently. Let η = Q−1ψ−1. Each equation in the system now
has the form byit+1 = λibyit + ηrow(i) bft+1

4. Reduce the dimension of the system by substituting out for one of the unknowns.
Typically a system of equations of this form will have as many unstable roots
(eigenvalues outside the unit circle) as there are non-predetermined jump
variables; ie the system will have a saddlepoint property.

# unstable roots (|λi| > 1) = # jump (non-predetermined varibles) eg consumption

# stable roots (|λi| < 1) = # predetermined varibles eg capital

If there are too many stable roots there will exist many rational expectations
equilibria - this scenario is the basis of the literature on sunspots. If there are
too few stable roots, a rational expectations equilibrium will not exist. We can
determine which root in the system is unstable by examining the matrix Λ.
Take conditional expectations of these equations given information at time t

Et [byit+1] = λibyit +Et

h
ηrow(i) bft+1i

Now the conditional forecast errors
³
Et

h bft+1i´ are zero (by definition). Thus
1

λi
Et [byit+1] = byit
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Iterating forward
1

λi
Et

·
1

λi
Et+1 [byit+2]¸ = byit

and (using the law of iterated expectations)

1

λTi
Et [byit+T ] = byit

Now suppose we impose a non-explosiveness condition of the formEt [byit+T ]→ 0
as T →∞. If |λi| > 1 (in which case we will say that the ith root is unstable or
explosive), this condition implies that the only solution to the equation above
is byit = 0 for all t. Suppose we find that |λi| > 1 and thus that byit = 0. Then

byit =X
j

(Q−1)ijbxjt = (Q−1)i1bct + (Q−1)i2bkt + (Q−1)i3bzt = 0
In this case we can, for example, solve for bct as a linear function of bkt and bzt.

bct = ¡ ck cz
¢Ãdkt

zt

!

where ck = − (Q−1)i2(Q−1)i1
and cz = − (Q−1)i3(Q−1)i1

. In this example therefore, the one
unstable root places one linear restriction on bxt that relates the value of the free
variable, bct to the values of the predetermined variables bkt and bzt. In general,
for each eigenvalue in a system we find that is larger than one in absolute value,
we can solve out for one variable.

5. For the unstable root byit = 0 for all t. Thus
byit+1 = λibyit + ηrow(i) bft+1

implies that

ηrow(i) bft+1 = ηrow(i)

 −ψ1bωt+1

0bεt+1
 = 0

This means that there is no room for expectational errors to have an indepen-
dent effect on the equilibrium path; expectational errors in the intertemporal
Euler equation are linearly related to innovations to productivity:

ψ1bωt+1 =
ηi,3
ηi,1
bεt+1
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6. Simply plug the expression for bct derived in Step 9 back into the system, and
reduce the number of equations and variables by 1, ending up with a system in
just bk and bz.Ãck

z

!
t+1

=

µµ
A21
A31

¶¡
ck cz

¢
+

µ
A22 A23
A32 A33

¶¶Ãck
z

!
t

+

µ
ψ−1row(2)
ψ−1row(3)

¶ −ηi,3
ηi,1
bεt+1

0bεt+1


=

µµ
A21
A31

¶¡
ck cz

¢
+

µ
A22 A23
A32 A33

¶¶Ãck
z

!
t

+

Ãc0
ε

!
t+1

2. Sunspots
Suppose, for the sake of expositional simplicity, that there is no fundamental un-
certainty in the economy, i.e. that σ2 = 0. This means that we can eliminate one
equation and one unknown (z) from our system. Thus we now have

ψbxt+1 + Jbωt+1 = φbxt + brt+1
where

bωt+1 = Et [bxt+1]− bxt+1 = Ãdωc

ωk

!
t+1

, brt+1 = Ãc00
!

t+1

, J =

µ
ψ11 ψ12
0 0

¶
This can be written as

ψbxt+1 = φbxt + bft+1
where bft+1 = µ −ψ1bωt+1

0

¶
=

µ
εt+1
0

¶
Inverting ψ (assuming this is possible)bxt+1 = ψ−1φbxt + ψ−1 bft+1
Compute the eigenvalues of A = ψ−1φ.
Now suppose (hypothetically) that A has 2 eigenvalues inside the unit circle (ie the

system has two stable roots). Let εt+1 be any random variable that is unforecastable
at date t in that Et(εt+1) = 0.

Suppose bc1 = bk1 = 0 (we are in the non-stochastic steady state)
The equation above defines a stable Markov process.
Thus the model generates business cycles driven by a non-fundamental random

variable; even with no ‘real’ shock at t+1 (since there is no fundamental uncertainty)
the realized value for xt+1 can differ from the expected value at t. Note that since
the only requirement for the non-fundamental shock process is that Et(εt+1) = 0 this
economy has an infinite number of equilibria.
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3. The Schur Decomposition (see Klein 2000 and Soderlind 1999)

In some cases once we have linearized the system of equations characterizing equilib-
rium and have it in the form

ψbxt+1 = φbxt + bft+1
the matrix ψ turns out to be non-invertible. This will happen if we have some non-
intertemporal equations in our system, such as a first order condition for labor supply.
In this case we need to use slightly more sophisticated linear algebra.

1. Decide what variables are going to be in the system of equations and solve for
the steady state (balanced growth path). Let x denote the vector of variables
in the system.

2. Order the variables and equations characterizing equilibrium so that:

(a) Date t + 1 variables (except innovations to shocks) are on the LHS and
date t variables are on the RHS.

(b) Predetermined variables (eg values for shocks, capital stocks) come first
and non-pre-determined (eg labor supply) variables second.

(c) Inter-temporal equations (eg inter-temporal budget constraints, laws of
motion for shocks, inter-temporal Euler equations) are placed above, and
intra-temporal equations below.

(d) The inter-temporal Euler equations are placed last among the set of inter-
temporal equations.

3. Take first order Taylor series approximations around the steady state values for
state variables. Let ψij denote the partial derivative evaluated at the steady
state of the left hand side (LHS) of the (expectation of the) ith equation with
respect to j and φij denote the same thing for the right hand side (RHS).

4. Stack up the linearized system of equations in a matrix system following the
ordering described above.

ψbxt+1 + Jbωt+1 = φbxt + bvt+1
where bωt+1 = Et [bxt+1] − bxt+1. Let k denote the row(s) corresponding to the
inter-temporal Euler equations. For h 6= k, expectation terms do not enter
equations and thus the corresponding row of J is all zeros. The kth row of
J is ψk. The LHS of the equations corresponding to the inter-temporal Euler
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equations are ψkbxt+1 + ψkbωt+1 = ψkEt [bxt+1] = Et [ψkbxt+1] .Let l denote the
row(s) corresponding to the laws of motion for the exogenous shocks. For h 6= l,bvht+1 = 0. Let bvlt+1 = st+1. Now this system is clearly equivalent to a system
with errors in equations given by bft+1 where

ψbxt+1 = φxt + bft+1
and bfit+1 =

 st+1 i = l
−ψkω i = k
0 i 6= k, l

5. Perform the Generalized Complex Schur Decomposition. Given ψ and φ this
returns Q, Z, S and T such that

ψ = QSZH

φ = QTZH

QSZHbxt+1 = QTZHxt + bft+1
Here S and T are upper triangular andQ and Z are orthogonal. The latter prop-
erty means that for exampleQHQ = I whereQH is the transpose of the complex
conjugate of Q. The decomposition should be ordered so that the stable gener-
alized eigenvalues come first where the generalized eigenvalue is the ith element
of T divided by the ith element of S (this will either be done automatically or
will be an option you can set when invoking the command). Using Paul Soder-
lind’s Gauss routine, (available at http://www.hhs.se/personal/PSoderlind/)
the Decomposition may be called as follows.

{T, S,Q, Z, λG} = zTgSen(φ, ψ, cutoff, 1, 0)

Here λG are the ‘generalized eigenvalues’. The cutoff argument is used to tell
Gauss what should count as a stable eigenvalue and what as an unstable one
- if the absolute value of the ith generalized eigenvalue λGi is less than cutoff
then this eigenvalue is stable. In most cases choosing cutoff = 1 should be
appropriate. The final two arguments determine ordering.

6. Count the number of stable eigenvalues - call this ns. Let nu = nvar−ns denote
the number of unstable eigenvalues (nvar being the number of variables in the
system).

7. Premultiply through by QH .

SZHbxt+1 = TZHxt +QH bft+1
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8. Let

Ãcs
u

!
t

be defined by Z

Ãcs
u

!
t

= xt where the partition is such that s has

dimension ns × 1, and u is nu × 1. This implies thatÃcs
u

!
t

= ZHxt (5)

and thus we can write

S

Ãcs
u

!
t+1

= T

Ãcs
u

!
t

+QH bft+1
9. Partitition the columns of S, T, Z and QH conformably with s and u. Thus, for
example, S11 is of dimension ns × ns, while S12 is ns × nu.µ

S11 S12
S21 S22

¶Ãcs
u

!
t+1

=

µ
T11 T12
T21 T22

¶Ãcs
u

!
t

+

µ
QH
11 QH

12

QH
21 QH

22

¶Ã dfst+1
fut+1

!

10. Since S21 and T21 are zeros, and the generalized eigenvalues corresponding to
the last nu equations are unstable, the only stable solution to this system of
equations requires that but = 0 for all t. The first set of equations are then

S11bst+1 = T11bst + ¡QH
11 Q

H
12

¢Ã dfst+1
fut+1

!
(6)

The second set of equations are

¡
QH
21 Q

H
22

¢Ã dfst+1
fut+1

!
= 0 (7)

which implies that (assuming that QH
22 is invertible)bfut+1 = − ¡QH
22

¢−1
QH
21
bfst+1 (8)

11. Note that 5 implies thatÃdxs
xu

!
t

=

µ
Z11
Z21

¶bst ·
+

µ
Z21
Z22

¶but¸
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Supposing Z11 is invertible, we have

bst = Z−111 bxst
and

xut = Z21bst = Z21Z
−1
11 bxst

12. Substitute bst = Z−111 bxst into 6
S11Z

−1
11 bxst+1 = T11Z

−1
11 bxst + ¡QH

11 Q
H
12

¢Ã dfst+1
fut+1

!

13. Premultiply through by S−111 and substitute in 8.

Z−111 bxst+1 = S−111 T11Z
−1
11 bxst + S−111

¡
QH
11 Q

H
12

¢Ã bfst+1
− ¡QH

22

¢−1
QH
21
bfst+1

!

bxst+1 = Z11S
−1
11 T11Z

−1
11 bxst + Z11S

−1
11

³
QH
11 −QH

12

¡
QH
22

¢−1
QH
21

´ bfst+1


