
Notes on Solving the Kocherlakota (1996)
Economy

Jonathan Heathcote

October 21, 2005

Suppose there are equal numbers of two types of households
Households have preferences over consumption given by

E
∞P
t=0

βtu(ct)

where u is strictly concave, β < 1.
Each hosuehold receives a stochastic income stream, {yt}∞t=0 , where yt is iid

according to the discrete probability distribution Prob(yt = ys ∈ [0, 1]) = Πs,
s ∈ {1, 2, ..., S} .
(later we will loosen the iid assumption)
Assume that if one type of household receives ys, the other receives 1− ys.
At any date t, type 1 household has income yt and consumption ct while

type 2 household has 1− yt and 1− ct.
Think about set of efficient incentive-compatible allocations, when house-

holds always have the option to revert to autarky.

1 Approach 1 (see Ljunqvist and Sargent)
Look for a recursive formulation by finding a state variable vt such that efficient
allocations have the form

ct = g(vt, yt)

where vt evolves according to

vt+1 = l(vt, yt)

vt must summarize, in an appropriate fashion, the history yt = {yt}tt=0 .
Try letting vt be expected discounted lifetime utility from period t onwards

promised to type 1 agent in t− 1.
Notation:

• v : expected discounted lifetime utility promised to type 1 agent.

1

• P (x) : maximum expected discounted lifetime utility that can be promised
to type 2 agent given v = x

• ws : expected continuation utility from tomorrow on for the type 1 agent
if the current shock turns out to be s.

• cs : consumption for the type 1 agent if the current shock turns out to be
s.

Suppose the planner makes choices for cs (and implicitly 1−cs) and ws prior
to the realization of s in the current period.
Planner’s problem in recursive form

P (v) = max
{cs,ws}

SP
s=1
Πs {u(1− cs) + βP (ws)}

subject to:

1. The type 1 guy gets at least v in terms of expected utility

SP
s=1
Πs [u(cs) + βws] ≥ v

2. The type 1 guy wants to participate

u(cs) + βws ≥ u(ys) + βvaut s = 1, ..., S

3. The type 2 guy wants to participate

u(1− cs) + βP (ws) ≥ u(1− ys) + βvaut s = 1, ..., S

cs ∈ [0, 1]
ws ∈ [vaut,vmax]

Here vaut is the value of autarky, and because of symmetry is the same for
both types

vmax is the maximum continuation utility a type 1 agent can be promised
subject to the type 2 agent being willing to participate.

2

Associate multipliers μ, {λs}Ss=1 , {θs}
S
s=1 with constraints 1, 2 and 3.

Assuming P (v) is concave and differentiable, the first order conditions are

cs : −(Πs + θs)u
0(1− cs) + (Πsμ+ λs)u

0(cs) = 0

u0(1− cs)

u0(cs)
=

Πsμ+ λs
Πs + θs

ws : βΠs (P
0(ws) + μ) + βλs + βθsP

0(ws) = 0

ΠsP
0(ws) + θsP

0(ws) = − (Πsμ+ λs)

P 0(ws) =
− (Πsμ+ λs)

Πs + θs

Combining the two FOCs

−u
0(1− cs)

u0(cs)
= P 0(ws)

This says that agents’ MRS’s between cs and ws are equalized (equivalently
the two agents are equally willing to trade off cs and ws)

u0(cs)

β
= −u

0(1− cs)

βP 0(ws)

By the envelope theorem
P 0(v) = −μ

For a given v and a given s, at most one participation cosntraint can bind.
Thus there are 3 possilibities:

1. Neither constraint binds:. λs = θs = 0 implies

u0(1− cs) = μu0(cs)

P 0(ws) + μ = 0

Thus
u0(1− cs)

u0(cs)
= −P 0(ws) = μ

So in this case, consumption is independent of the endowment, and since
P 0(v) = −μ = P 0(ws), ws = v.

2. λs > 0 and θs = 0. Now the second FOC is

Πs (P
0(ws) + μ) + λs = 0

which implies
Πs (P

0(ws)− P 0(v)) + λs = 0

3

Since P 0(ws) < P 0(v), ws > v and thus both promised value and con-
sumption of the type 1 agent, cs, are increased, since

u0(1− cs)

u0(cs)
= −P 0(ws)

The interpretation is that the type 1 agent gets more consumption today
and is promised more value in the future in exchange for giving some of
his endowment to the planner (and thereby to agent 2)

3. λs = 0 and θs > 0. Now

Πs (P
0(ws) + μ) + θsP

0(ws) = 0

ΠsP
0(v) = θsP

0(ws) +ΠsP
0(ws)

P 0(ws) =
ΠsP

0(v)

θs +Πs

In this case we have the reverse situation. The planner must lower both
ws and cs.

Given v, the first case prevails for intermediate values for yt, the second in
high- yt states and the third in low yt states.
The optimal contract expresses cs, ws as non-decreasing functions of ys with

the property that there are 2 numbers yl(v) and yh(v) (both increasing in v)
such that cs, ws are each constant for ys ∈ [yl(v), yh(v)] , i.e. risk sharing is
complete for shocks in this range.

2 Approach 2: Marcet-Marimon Lagrangian ap-
proach (see also Kehoe and Perri, ECA 2002)

I now describe an alternative recursive approach to solving for efficient alloca-
tions.
Suppose now that shocks are potentially persistent and follow a first-order

Markov process.
Let y[yt] denote the last element of yt.
Suppose the planner puts weight 1−λ on the agent who receives endowment

1− y[yt] and weight λ on the agent who receives y[yt].
Let Vaut(y[yt]) denote the value of autarky for the type λ agent following

history ht, and V ∗aut(y[y
t]) denote the value for the type 1− λ agent (note that

the value of autarky depends only on y[yt] given the Markov assumption).

4

The Lagrangian for the planner is

J = (1− λ)
∞P
t=0

P
yt
βtπ(yt)u(1− c(yt)) + λ

∞P
t=0

P
yt
βtπ(yt)u(c(yt)) +

∞P
t=0

P
yt
βtπ(yt)μ(yt)

"
∞P
j=0

P
yt+j

βjπ(yt+j |y[yt])u(c(yt+j))− Vaut(y[y
t])

#
+

∞P
t=0

P
yt
βtπ(yt)η(yt)

"
∞P
j=0

P
yt+j

βjπ(yt+j |y[yt])u(1− c(yt+j))− V ∗aut(y[y
t])

#

where, for example βtπ(yt)μ(yt) is the multiplier on the date t history yt incen-
tive compatibility constraint for the type λ agent.
Now there is a useful trick called the ‘partial summation’ formula which says

that
∞P
t=0

βtμt
∞P
j=0

βju(ct+j) =
∞P
t=0

βtMtu(ct)

where Mt =Mt−1 + μt with M−1 = 0
Verifying this

∞P
t=0

βtμt
∞P
j=0

βju(ct+j) = μ0

"
∞P
j=0

βju(cj)

#
+ βμ1

"
∞P
j=0

βju(c1+j)

#
+ β2μ2

"
∞P
j=0

βju(c2+j)

#
= μ0u(c0) + (μ0 + μ1)βu(c1) + (μ0 + μ1 + μ2)β

2u(c2) + ...

= M0u(c0) +M1βu(c1) +M2β
2u(c2) + ...

We can use this trick to rewrite the Lagrangian:

J = (1− λ)
∞P
t=0

P
yt
βtπ(yt)u(1− c(yt)) + λ

∞P
t=0

P
yt
βtπ(yt)u(c(yt)) +

∞P
t=0

P
yt
βtπ(yt)

£
M(yt)u(c(yt))−

£
M(yt)−M(yt−1)

¤
Vaut(y[y

t])
¤
+

∞P
t=0

P
yt
βtπ(yt)

£
N(yt)u(1− c(yt))−

£
N(yt)−N(yt−1)

¤
V ∗aut(y[y

t])
¤

whereM(yt) =M(yt−1)+μ(yt) withM(y−1) = 0 and N(yt) = N(yt−1)+η(yt)
with N(y−1) = 0.
Now we can simplify slightly, if we let M(y−1) = λ and N(y−1) = 1− λ, so

then we get

J =
∞P
t=0

P
yt
βtπ(yt)

£
M(yt)u(c(yt))−

£
M(yt)−M(yt−1)

¤
Vaut(y[y

t])
¤
+

∞P
t=0

P
yt
βtπ(yt)

£
N(yt)u(1− c(yt))−

£
N(yt)−N(yt−1)

¤
V ∗aut(y[y

t])
¤

5

Taking a first order condition with respect to c(yt) gives

βtπ(yt)M(yt)u0(c(yt))− βtπ(yt)N(yt)u0(1− c(yt)) = 0

Rearranging gives
N(yt)

M(yt)
=

u0(c(yt))

u0(1− c(yt))

Now let us guess that optimal allocations in this economy can be described
recursively, given as state variables at date t, y[yt] and N(yt−1)

M(yt−1) = z(yt−1).

So let the state variable be x = (z−1, y) . Thus we will look for an allocation
rule of the form c = c(x), and a law of motion for z of the form z = z(x). Let
the notation z−1[x] indicate the first element of x and y[x] indicate the second
element.
Define v(x) = μ(x)

M(x) and w(x) = η(x)
N(x) .

We can show that

z(x) =
1− v(x)

1− w(x)
z−1[x]

Check:

1− v(x)

1− w(x)
z−1[x] =

M(x)−μ(x)
M(x)

N(x)−η(x)
N(x)

z−1[x] =

M(x−1)
M(x)

N(x−1)
N(x)

N(x−1)

M(x−1)

So, given the functions v(x) and w(x) we have a law of motion for z.
We also have, implicitly, a decision rule c(x) defined by

z(x) =
u0(c(x))

u0(1− c(x))

3 Case 1: No enforcement problems
Suppose, to get warmed up, that the government faces no enforcement problems.
Then

v(x) = w(x) = 0 ∀x
So

z(x) = z−1[x] ∀x
and

z−1[x] =
u0(c(x))

u0(1− c(x))
∀x

So consumption is constant through time.
To simulate the economy through time, the only additional thing we need

to know is the initial value for z, or, equivalently, for c.We can solve for this by
noticing that the planner will want to set

(1− λ)u0(1− c) = λu0(c)

where c is the value for the type λ agent’s consumption that will prevail for
ever.

6

4 Case 2: Enforcement problems
Now consider the version with the enforcement problem
To make more progress, define value functions

W (x) = u(c(x)) + β
P
y0
π(y0|y)W (x0)

Let W ∗(x) denote the foreign agent’s value function.
Our solution strategy will be to make initial guesses for the functions W (x),

W ∗(x), z(x) and c(x) and to iterate on these guesses.
In fact we will create a (two-dimensional) grid over x, guess the values of

these functions at grid points, and make some assumptions about what the
functions look like in between grid points (e.g. that they are piecewise linear).
Let us use as initial guesses the solution to the problem without enforcement

problems. In fact it is important that our initial guesses for the value functions
are everywhere at least as large as the true solutions. We will return to this
point.
So z0(x) = z−1[x] ∀x, etc.
Now take the first point in the grid on x, denoted x1, and check whether

enforcement constraints are satisfied, one constraint at a time.
So first check whether

u(c0(x1)) + β
P
y0
π(y0|y[x1])W0(z−1[x1], y

0) > Vaut(y[x1])

Then check the other agent’s constraint.
To perform this check we first need to compute Vaut(y[x1]) and V ∗aut(y[x1]),

which is straightforward.
There are three possible cases:

1. Neither agent’s constraint is violated at x1

(a) Update functions as follows:

z1(x1) = z−1[x1]

c1(x1) is given by the solution to

z1(x1) =
u0(c1(x1))

u0(1− c1(x1.))

and

W1(x1) = u(c1(x1)) + β
P
y0
π(y0|y[x1])W0(z1(x1), y

0)

W ∗1 (x1) = u(1− c1(x1)) + β
P
y0
π(y0|y[x1])W ∗0 (z1(x1), y0)

7

2. The λ−type agent’s constraint is violated at x1 (and the 1−λ type agent’s
constraint is not violated).

(a) We know that

u(c1(x1)) + β
P
y0
π(y0|y[x1])W0(z1(x1), y

0) = Vaut(y[x1])

z1(x1) =
u0(c1(x1))

u0(1− c1(x1))

These are two equations in two unknowns: c1(x1) and z1(x1). Solve
for these unknowns.

(b) Given c1(x1) and z1(x1) we can update the value functions to get
W1(x1) and W ∗1 (x1)

3. The 1−λ type agent’s constraint is violated at x1 (and the λ type agent’s
constraint is not violated). We deal with this case following steps very
similar to a and b above.

Once we have finished with the first point in the grid on x, we move to
x2. We should still use the original functions W0, W

∗
0 and z0 when solving for

c1(x2), z1(x2), W1(x2) and W ∗1 (x2).
Once we have gone through the whole grid over x, we check whether c1(x) =

c0(x) ∀x. If so, we are done. If not set W (x) = W1(x), W
∗(x) = W ∗1 (x),

c(x) = c1(x), z(x) = z1(x), and repeat.

8

