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1. The recursive version of the household’s problem

Recall that in the revised household problem, the aggregate state of the economy is summarized

by the vector Z = (K,B, τ). The notation is as follows: K denotes the aggregate capital in place

at the start of the period, B is the quantity of government debt that matures in the current

period, and τ is the current period tax rate. A household’s individual state is given by s = (e, a),

where e is the household-specific productivity shock that arrives at the start of the period, and

a is the stock of assets carried over from the previous period.

With the problem described recursively, households (in the benchmark incomplete-markets

model) solve

V (s, Z) = max
c,a0,n

{u(c, n) + βE [V (s0, Z0) |s, Z]}

subject to

c+ a0 = [1 + r(Z)(1− τ(Z))] a(s) + (1− τ(Z))w(Z)e(s)n

c ≥ 0, a0 ∈ A, n ∈ [0, 1]

taking as given:

1. the Markov processes Π and πτ

2. the standard functions for factor prices,

r(Z) = αK(Z)α−1N(Z)1−α − δ (1.1)



w(Z) = (1− α)K(Z)αN(Z)−α (1.2)

3. an aggregate decision rule for labor (see the derivation for this expression in the next

sub-section)

N(Z) =

µ
lP

i=1
p∗i e

1+ε
i

·
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(1.3)

4. the law of motion for government debt,

B(Z0) = (1 + r(Z))B(Z) +G− τ(Z) [r(Z) (K(Z) +B(Z)) + w(Z)N(Z)] (1.4)

5. a law of motion for aggregate capital of the form

ln (K(Z 0)) = α0 + α1 ln (K(Z)) + α2 ln (B(Z)) + α3 ln (τ(Z)) . (1.5)

αi, i = 0, 1, 2, 3 ∈ R.

1.1. Derivation of aggregate labor supply expression
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2. Solving the household’s problem

The state space for this problem is large. Moreover, given that markets are incomplete and

agents face a borrowing constraint that may or may not be binding, it is clear that a global

solution method is appropriate. I solve the consumer’s problem using the finite element method

as outlined by McGrattan (1999). The method involves searching for piecewise linear decision

rules that imply small Euler equation residuals across the state space. The grid I use has

30 points in the individual assets dimension, and 3 points in both the aggregate capital and
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aggregate debt dimensions.1 Given 3 possible values for household productivity, and 2 values

for the tax rate, the total number of grid points is 1620.

The first order conditions to the household’s problem are:

ψn(s, Z)
1
ε = w(Z)e(s)(1− τ(Z)) (2.1)

and

uc(c(s, Z), n(s, Z)) ≥ βE [uc(c(s
0, Z0), n(s0, Z0)) (1 + r(Z0)(1− τ(Z0)))]

= if c(s, Z) < a(s) + (1− τ(Z)) [r(Z)a(s) + w(Z)e(s)n(s, Z)] .

Given a guess for the consumption decision rule, bc, the residual for the household’s inter-
temporal Euler equation may be evaluated as follows. Equations 1.1, 1.2 and 1.3 may be used

to compute values for r(Z), w(Z) and n(s, Z). Next period household wealth, a(s0) = a0(s, Z)

follows from the household budget constraint, given bc(s, Z). The probability distribution over
next period productivity, e(s0), is given by the matrix Π. Next period government debt, B(Z 0),

is given by 1.4. Next period capital, K(Z 0) is given by 1.5. The probability distribtion over next

period tax rates is given by the function πτ ((τ(Z), B(Z
0)) , τ(Z0)) . For each possible value for

s0 = (e(s0), a(s0)) and Z0 = (K(Z 0), B(Z 0), τ(Z 0)), equations 1.1, 1.2 and 1.3 may be used once

more to compute values for r(Z 0), W (Z0) and n(s0, Z0). For each possible (s0, Z0), next period

consumption is given by bc(s0, Z0).
There are various possible ways to deal with the no-borrowing constraint. In an earlier version

of the paper, I iterated on a function describing the expected marginal utility of consumption

(rather than the consumption function itself) in an approach reminiscent of the parameterized

expectations algorithm described by Christiano and Fischer (2000). In this version of the paper

I follow the penalty function approach advocated by McGrattan, which involves imposing a

utility penalty for violating the non-negative asset holding constraint instead of thinking of the

constraint as limiting the feasible choice set. Once the problem has been solved given a large

1 I experimented with more grid points in the aggregate capital and debt dimensions, but found that this had

virtually no effect on the results. The reason is that household decision rules are very close to linear in aggregate

capital and aggregate debt. Of course, the presence of the no-borrowing constraint means that decision rules are

highly non-linear in household wealth. Thus it is important to have more grid points in the household wealth

dimension, and to space grid points unevenly so that the grid is especially fine at low levels of wealth.
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value for the penalty, I record the grid points at which the penalty is being imposed, and then

resolve the household’s problem imposing additional boundary conditions at these points.

3. The economy without aggregate risk

Prior to solving the model with aggregate tax shocks, I first solve for the stationary distribution

of wealth in an economy with no aggregate uncertainty. In this economy agents assume that

aggregate variables and factor prices will be constant through time. There are three reasons for

first considering this economy.

1. Since the state space is much smaller (there are no aggregate states) it is simple to solve

for optimal household decision rules. These decision rules are then used to construct the

first guess for decision rules in the full-blown economy with aggregate risk.

2. In the economy without aggregate risk, there is a unique stationary asset holding distribu-

tion. Since the state space is small (relative to the benchmark economy) this distribution

may be rapidly computed given a certain parameterization. Thus I use the no-aggregate-

risk economy to begin the search for productivity process parameters that generate an

equilibrium wealth distribution resembling that in the United States (see the parameteri-

zation section).

3. In the economy without aggregate risk, aggregate capital, debt and tax revenue are con-

stant through time. Thus these values provide a first guess for K, B and τ , parameters

which appear in the law of motion for capital (see the next section).

To ensure that in the economy without aggregate risk agents face a similar overall amount

of risk as agents in the benchmark economy with aggregate tax shocks, I compute the steady

state allocations for an economy in which households face no aggregate tax shocks, but where

they do face additional idiosyncratic income shocks with the same magnitude and persistence

as the tax shocks in the benchmark economy. Thus in each period, half of households pay taxes

at the low rate, while the remainder are taxed at the high rate. I find that the constant values

for aggregate capital, government debt and tax revenue in this economy are very similar to

their average values over a long simulation of the benchmark economy. Furthermore, statistics
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characterizing the stationary distribution of wealth are very similar to their average values over

a long simulation of the benchmark economy.

4. Keeping track of the joint distribution over wealth and productivity

To simulate either the benchmark model economy or the economy with no aggregate shocks,

I create a fine grid on asset holdings, and represent the joint distribution over asset holdings

and productivity (and taxes in the no-aggregate-risk economy) as a collection of piecewise linear

cumulative distribution functions, one for each value for productivity (see Rios-Rull 1999). Given

a grid {a1, ..., am, ..., aM}, and a collection of distrubution functions in the current period given
by {Fi (·)}li=1 , the value of the distribution in the following period at e(s0) = ej , a(s

0) = am is

given by

F 0j(am) =
lP

i=1
Fi
¡
a−1((ei, am) , Z)

¢
Πi,j (4.1)

where a−1((ei, am) , Z) denotes the value for assets a∗ such that a0 ((ei, a∗) , Z) = am. Updating

update the entire joint distribution one period is simply a matter of looping over j and m. I

use 2, 000 unevenly-spaced points in the grid on asset holdings. Thus this joint distribution

is represented by 6, 000 numbers in the benchmark economy, and 12, 000 numbers in the no-

aggregate-risk economy. Cumulative distribution functions describing the average simulation

distribution of asset holdings across the entire population and conditional distributions given

particular values for household productivity are shown in figure 1 at the end of this appendix.

5. The law of motion for aggregate capital

Given a method for computing decision rules c(·, ·), I implement the Krusell and Smith (1998)
method for deriving a forecasting rule for aggregate capital as follows:

1. Use the economy without aggregate shocks to get estimates for K, B and τ , the simulation

averages for capital, debt and the tax rate.

2. Specify an initial vector of α parameters. I set α1 = 1, α2 = α3 = 0, and α0 =

(1 − α1) ln(K) − α2 ln(B) − α3 ln(τ). Set an initial joint distribution over wealth and
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productivity
©
F 0i (·)

ªl
i=1

(e.g. the unique stationary distribution for the economy with no

aggregate shocks). This joint distribution should have the property that

lP
i=1

·
MP
m=2

¡
F 0i (am)− F 0i (am−1)

¢ am − am−1
2

+ F 0i (a1)a1

¸
= K +B. (5.1)

3. Set Z0 = (K0, B0, τ0) =
¡
K,B, τ l

¢
4. Compute household decision rules across the state space (see above).

5. Update the joint distribution over wealth and productivity using eq. 4.1 to generate©
F 1i (·)

ªl
i=1

.

6. Apply eq. 5.1 to
©
F 1i (·)

ªl
i=1

to compute A1, aggregate wealth carried into period 1. Use

the government budget constraint to compute B1, and setK1 = A1−B1. Use the transition
function for taxes to draw a value for τ1 given τ0 and B1. Create Z1 = (K1, B1, τ1).

7. Repeat this procedure for a large number of periods to generate time series for Z (I simulate

for 11, 000 periods, and discard the first 1, 000 observations).

8. Use this time series to update the guesses for (α1, α2, α3) vector by running an ordinary

least squares regression of the form given in eq. 1.5. Set α0 = (1−α1) ln(K)−α2 ln(B)−
α3 ln(τ), where K, B and τ are the initial values (see step 1).

9. Repeat the entire process of solving the households’ problems, simulating the economy

and updating parameter values until the parameters (α1, α2, α3) defining the forecasting

rule for aggregate capital converge.

10. At this point, compute K, B and τ over a long simulation. If these differ from the initial

guessed values, update a0, and repeat the previous steps to recompute the remaining

elements of α.

I find that the two-step procedure described above in which I first look for convergence in

(α1, α2, α3) prior to updating the terms K, B and τ which define α0 is much more stable in

this environment than the alternative of simply letting the regression define the new intercept

coefficient α0 (as in Krusell and Smith). Note that at the end of entire procedure, the converged
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α vector is such that the forecasting rule households use when solving their problems is such

that their behavior generates a law of motion for capital for which the best (log) linear predictor

is the same forecasting rule.2

For the calibrated benchmark model described in the paper, the converged value for α1 is

close to but less than 1. The converged value for α2 is negative, indicating that ceteris paribus

more debt implies less investment and consequently a smaller next period capital stock. The

converged value for α3 is also negative, indicating that investment tends to be lower when the

tax level is high. The coefficients for the benchmark model, the incomplete-markets economy

with lump-sum taxes, and the economy with stochastic aging are reported in table 1 at the end

of this appendix.

6. The size of forecasting errors

Figure 2 at the end of these notes contains histograms showing the 1 year and 10 year forecast

errors for aggregate capital and for the real interest rate across a 10, 000 period simulation of

the benchmark economy.3 The cumulative forecasting error for capital 10 years hence is rarely

more than a tenth of a percentage point of the capital stock. Forecasting errors for the real

interest rate (the marginal product of capital minus the depreciation rate) are slightly larger.

A second measure of the accuracy of the forecasting rule is given by the R2 implied when the

forecasting rule is used to fit a long sample of simulated data. For the benchmark model the R2

is 0.99982, suggesting a high degree of accuracy.

Since decision rules should be continuous with respect to predicted values for future capital, I

argue that improving forecasting accuracy would not lead to large changes in individual decision

2 I also experimented with using two forecasting equations for aggregate capital, one for each value of the tax

rate (a la Krusell and Smith 1998). This means estimating more parameter values with fewer observations for

each regression (holding constant the total length of the simulation). I found that the co-efficients on aggregate

capital and government debt were extremely similar for both equations, and therefore decided to estimate a single

forecasting rule.
3The errors at a 1 year horizon are simply the percentage difference between the predicted and realized capital

stocks. The errors at a 10 year horizon are computed similarly, except that the predicted capital stock is now

what a household would predict capital to be 10 years hence given perfect foresight regarding the time path for

the tax rate over that horizon.
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rules or the aggregate behavior of the economy. Thus the Krusell and Smith computational

technique is appropriate for this particular model economy.

7. Calibrating the tax process

The conditions that ensure that debt remain bounded in the benchmark model are

τh ≥ r (Kl, N(Kl, τh))Dh +G

r (Kl,N(Kl, τh)) (Dh +Kl) + w (Kl,N(Kl, τh))N (Kl, τh)
(7.1)

D ≤ Dh −G+ τ l [w (Kl, N(Kl, τ l))Nl(Kl, τ l) + r (Kl,N(Kl, τ l))Kl]

1 + r (Kl, N(Kl, τ l)) (1− τ l)
. (7.2)

τ l ≤ r (Kh, N(Kh, τ l))Dl +G

r (Kh, N(Kh, τ l)) (Dl +Kh) + w (Kh, N(Kh, τ l))N (Kh, τ l)
(7.3)

and

D ≥ Dl −G+ τh [w (Kh, N(Kh, τh))N(Kh, τh) + r (Kh, N(Kh, τh))Kh]

1 + r (Kh, N(Kh, τh)) (1− τh)
. (7.4)

The algorithm used to pick values for tax parameters is as follows:

1. Guess a value for Dh/Y and a value for λ, the persistence parameter.

2. Given the historical mean debt to GDP ratio B/Y set Dl/Y = 2×B/Y −Dh/Y .

3. Guess a value for government consumption G, a value for the mean of the limiting distrib-

ution for aggregate capital, K and a value for η to define the bounds on aggregate capital

where Kl = K − η and Kh = K + η.

4. Solve for values for τ l, τh and N such that:

1. N is the value for aggregate labor supply generated by eq. 1.3 given K and τ =

(τ l + τh)/2.

2. τh is given by 7.1 at equality

3. Given B = (Dh+Dl)/2 whereDh =
¡
Dh/Y

¢×F (K,N) andDl =
¡
Dl/Y

¢×F (K,N),

set τ l such that at B = B andK = K the absolute change in the stock of debt implied

by eq. 1.4 is equalized across tax rates, i.e. ∆B|τ=τ l = −∆B|τ=τh . This condition
effectively guarantees that low and high tax regimes are equally persistent, and thus
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that the mean of the limiting distribution over the tax rate is in fact equal to τ . It is

important to verify that the implied value for τ l does not violate 7.3.

5. Given τ l, τh, Dh, Dl, Kl, Kh, G compute D, D using 7.2 and 7.4.

6. Simulate the economy for a very large number of periods and compute maximum and

minimum values for aggregate capital. Revise η appropriately and resolve for τ l, τh, Dh,

Dl

7. Given boundsKl andKh that are not violated within a long simulation, compute the mean

of the limiting distribution for tax revenue as a fraction of GDP. Adjust G appropriately,

resolve for τ l, τh, Dh, Dl, Kl, Kh and resimulate.

8. Given a value for G such that the model reproduces on average the historical ratio of

tax revenue to GDP, check the variance of the tax revenue to GDP ratio in the limiting

distribution and compare to the historical variance. Adjust Dh/Y appropriately, resolve

for all other parameter values, and resimulate.

9. Given the correct variance, check the persistence of tax revenue to GDP across a simulation,

and adjust λ appropriately.

8. The process for idiosyncratic wages

Many papers in the labor literature have argued that earnings are well represented by an

ARIMA(0,1,1) or an ARIMA(1,1,1) process (for some recent examples, see Dickens 2000, Gottschalk

and Moffitt 2002, or Meghir and Pistaferri 2002). There are two problems with trying to imple-

ment such a process for earnings (or wages) in this type of model. The first is that shocks with

a permanent component do not fit very naturally into a model with infinitely-lived agents (I

return to this point below). The second is that richer shock processes imply larger state spaces,

presenting computational problems. If to construct probability distributions over future wages

agents need to know (i) the current value of the random walk piece, (ii) the current value of

the transitory shock (for the AR bit), and (iii) the transitory innovation (for the MA bit), then

the state space is unmanageably large. Thus, in contrast to the labor literature, the applied

(quantitative) macro literature has typically adopted much more parsimonious specifications.
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In deciding on the right earnings model, one thing people look at is the auto-covariance of

log earnings at different lags, and the auto-covariance of changes in log earnings at different lags.

I therefore simulated the simple AR(1) process used to construct the wage process in the model,

and compared this to an ARIMA(0,1,1) process from Meghir and Pistaferri (table 3, bottom

panel, left column in their paper). Simulating lots of artificial households, each for 30 years,

the ARIMA(0,1,1) process essentially reproduces the numbers Meghir and Pistaferri report for

their pooled sample in table 1. Comparing the simple AR(1) process with theirs (without their

measurement error piece), the auto-covariances (in (log) levels and log first differences), the two

processes look roughly similar (see table 2).

The main difference I see here is that the ARIMA(0,1,1) is slightly more volatile that the

one I use. If I scale up the variance of the innovations to the AR(1) process to give a variance

of log earnings equal to 0.182, the simple AR(1) model generates the same auto-covariances at

lags 1 and 2 as the ARIMA(0,1,1) process.

If you simulate people for more years, the unit root component of the ARIMA(0,1,1) process

starts to dominate. The variance of earnings rises unboundedly, and auto-covariances do not

decline as the lag length increases. Thus the ARIMA(0,1,1) process and the infinite horizon

model do not fit together very happily. Still it is reassuring that the AR(1) process and the

ARIMA(0,1,1) process look broadly similar when you set the length of working life to a reason-

able number.

Note that the wage process as implemented in my model is unavoidably pretty crude simply

by virtue of being a three state Markov process characterized by only four independent parame-

ters. It is not even designed to be the best possible three state approximation to a continuous

AR(1) process: the evidence from empirical AR(1) models is just used to generate target values

for the persistence and variance of wage shocks.

9. The process for wages in the stochastic-aging economy

I assume that the probability of transiting from state ei via the mechanism identified as aging is

equal to 1/(bpiL), where bpi is the fraction of the population with productivity ei in the ergodic

distribution over E, and L is a constant equal to expected lifetime. The events of aging and

receiving a productivity shock are assumed mutually exclusive. The overall probability of moving
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from state i to state j, denoted bΠij , is therefore equal to the probability of transiting from i to

j via aging, plus the probability of transiting from i to j via a productivity shock, conditional

on not aging.

bΠ =


0 1bp1L 0

0 0 1bp2L
1bp3L 0 0

+

(1− 1/bp1L) 0 0

0 (1− 1/bp2L) 0

0 0 (1− 1/bp3L)

Π. (9.1)

The fractions bpi are the solutions to the system of equations bp = bpbΠ. To calibrate the
stochastic-aging economy I generate bΠ using exactly the same Π matrix as in the benchmark
model. I do this because I was unable to find an alternative data-consistent specification for Π

that generates realistic wealth inequality when households take as given the process associated

with bΠ. The average Gini co-efficient for wealth is only 0.63 compared to a value of 0.78 for the
other economies (and for the U.S.). The main reason for the low Gini is that the stochastic-aging

economy fails to capture concentration at the top end of the wealth distribution; the wealth-

poorest 40 percent of households still account for less than two percent of total wealth. The

median household by wealth in the stochastic-aging economy has 49 percent of mean wealth,

compared to only 6 percent in the benchmark model. The figure for the U.S. is 28 percent.

Note that the estimates for the variance and persistence of wages used to calibrate the bench-

mark model are based on household level data that has been purged of variation attributable to

age and education. Thus these estimates should be compared to the properties of the process

for productivity implied by the Π matrix (rather than the bΠ matrix).
Note also that while the aging / productivity shock distinction is a convenient conceptual

device, it is irrelevant for agents in the model who only care about the implied transition

probability matrix bΠ.
10. More details on results

10.1. The role of labor supply with lump-sum taxes when markets are incomplete

In section 5.1 of the paper I consider a heterogeneous-agent incomplete-markets model with

lump-sum taxes and exogenous labor supply. In section 5.2 I consider an identical economy

except that labor supply is now endogenous. Tax changes have slightly larger effects on aggregate
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consumption when labor supply is endogenous; the PCT is 14.9 versus 13.5 cents per dollar. The

reason is that with endogenous labor supply, hours are now positively correlated with wages, so

that individuals face more volatile earnings than when labor supply is fixed. Consequently they

find it slightly harder to adjust savings in order to consumption-smooth through lump-sum tax

shocks. This also translates into more precautionary saving, a high capital to output ratio, and

a lower interest rate (see table 3 in the paper).

10.2. Alternative preferences with proportional taxes when markets are complete

Suppose that u(c, n) =
£
cµ(1− n)1−µ

¤1−σ
/(1 − σ). Given a value for µ such that on average

n = 0.3, and recalibrating the tax process parameters, I compute the average impact effect of tax

cuts for various values for σ.When σ = 1 (implying preferences are separable in consumption and

leisure), the average propensity to consume out a tax cut and the average percentage changes in

labor supply, consumption and investment are respectively 21.0 cents per dollar, 4.9 percent, 0.6

percent and 12.2 percent. Thus compared to the baseline Greenwood-Hercowitz-Huffman utility

function used in the paper, the log-log alternative implies a similar response of consumption to

tax cuts, but a larger response of hours and output. Note that this example illustrates that

non-separability between consumption and leisure is not a necessary condition for tax cuts to

increase consumption. Increasing σ above one increases the consumption response and reduces

slightly the hours response to tax changes. However, for any Cobb-Douglas specification, the

Frisch elasticity of labor supply is much higher than most empirical estimates from micro data.

10.3. Wealth inequality and the response of aggregate consumption to tax changes

Figure 3 in the paper indicates that tax cuts generally have a greater stimulate effect on aggregate

consumption the smaller the fraction of total wealth held by the wealth-poorest 40 percent of

households (see the top-left panel). During a prolonged interval of high tax rates the ratio of

debt to GDP gradually falls. At the same time, households gradually run down their asset

holdings and more households pile up against the no-borrowing constraint. The longer the tax

rate remains high before eventually falling, the stronger the response of aggregate consumption,

both because more poor households have exhausted their assets, and also because the lower is

debt, the longer the tax cut is expected to last.
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By contrast, tax increases appear to have more powerful effects in periods when wealth-poor

households are relatively wealthy, though greater scatter in this case indicates a weaker rela-

tionship between the consumption effect and this measure of wealth inequality. To understand

this finding, consider a sustained period of low taxes. Expecting a tax increase in the future,

households gradually accumulate more precautionary asset holdings. The longer taxes remain

low, the larger is the ratio of debt to GDP when the tax rate eventually rises, and the larger

the asset holdings of the wealth-poorest households. There are, however, two off-setting effects

on the size of the aggregate consumption response when taxes eventially rise. On the one hand,

if taxes have been low for a long time, fewer households are close to the borrowing constraint

and unable to smooth through a tax increase. On the other hand, the ratio of debt to GDP

will tend to be high, implying that the tax increase is likely to be quite persistent and should

therefore have a large effect on aggregate consumption.

10.4. The persistence of tax changes and the response of aggregate consumption to

tax changes

One might suspect that one way to generate larger real effects is to increase the persistence of tax

shocks. I therefore experiment with lowering the persistence parameter λ so that the first order

autocorrelation of tax revenue to GDP is 0.77 instead of 0.63 (which implies an average duration

of tax changes of 7.7 years rather than 5 years). In this case the average PCT in the incomplete

markets version rises very slightly (from 28.8 to 29.4 cents per dollar) while the average PCT

in the complete markets version declines slightly (from 23.2 to 22.1 cents). I conclude that the

impact effect of tax changes is not particularly sensitive to their expected duration.
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Table 1: Law of Motion for capital 
 

  ECONOMY 
  Benchmark 

Incomplete-
markets 

Lump-sum 
taxes, 

endogenous 
labor, prices 

Stochastic-aging 
economy 

Co-efficients α1 0.918 0.995 0.922 
 α2 -0.0083 -0.0009 -0.0087 
 α3 -0.0060 0.0123 -0.0045 
     

R-squared R2 0.9998 0.9984 0.9997 
     

 
 
 
Table 2: Comparison of alternative shock processes 
 

Lag ARIMA(0,1,1), 
levels 

Simple AR(1), 
levels 

ARIMA(0,1,1), 
first differences 

Simple AR(1), 
first differences 

0 0.182 0.131 0.077 0.052 
1 0.142 0.106 -0.018 -0.003 
2 0.116 0.081 -0.009 -0.003 
3 0.097 0.060 -0.001 -0.003 
4 0.081 0.041 -0.001 -0.003 

 
 
 








