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1 Introduction

We revisit a classic and important question in public finance: what structure of income

taxation maximizes the social benefits of redistribution while minimizing the social harm as-

sociated with distorting the allocation of labor input? We focus on the Mirrleesian approach

(Mirrlees 1971), which seeks to characterize the optimal tax system subject only to the

constraint that taxes must be a function of individual earnings. Taxes cannot be explicitly

conditioned on individual productivity or individual labor input because these are assumed

to be unobserved by the tax authority. The Mirrleesian approach is attractive because it

places no constraints on the shape of the tax schedule and because the implied allocations

are constrained efficient.

Following this approach, Mirrlees (1971) found the optimal tax schedule to be close to

linear in his numerical exercises, a finding mirrored more recently by Mankiw et al. (2009).

In contrast, starting from the influential papers of Diamond (1998) and Saez (2001), most

recent quantitative papers have argued that marginal tax rates should be U-shaped, with

higher rates at low and high incomes compared with the middle of the income distribution.

We consider a model environment similar to the ones in these existing papers. Agents

differ with respect to productivity, and the government chooses an income tax system to

redistribute and finance exogenous government purchases. One innovation relative to most

of the existing literature is that we allow for partial private insurance. In particular, we

assume that idiosyncratic labor productivity has two orthogonal components: log(w) = α+ε.

The first component α cannot be privately insured and is unobservable by the planner—the

standard Mirrlees assumptions. The second component ε can be perfectly privately insured.

For the purposes of providing concrete practical advice on tax system design, it is important

to appropriately specify the relative roles of public and private insurance. When agents can

insure more risks privately, the government has a smaller role, and the optimal tax schedule

features lower tax rates and smaller lump-sum transfers.
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In our baseline model calibration, we use cross-sectional evidence on income and con-

sumption inequality to discipline the relative magnitudes of uninsurable and insurable wage

risk, and the shapes of the corresponding distributions. We then solve for the optimal allo-

cation numerically. We find that the tax and transfer system chosen by a utilitarian planner

features marginal tax rates that are increasing across the entire income distribution, a finding

that contrasts with the existing literature. This pattern is robust to a range of alternative

values for preference parameters.

We develop new intuition for what determines the shape of the optimal tax schedule,

which we use to better understand the disparate results in the literature. We emphasize

the idea that the amount of fiscal pressure that the government faces to raise revenue plays

a key role in shaping the optimal tax schedule. When fiscal pressure is relatively low—

for example, because required government expenditure is low—the optimal tax schedule is

upward sloping. An increasing marginal rate profile is attractive from an equity standpoint,

since a progressive marginal tax schedule redistributes the tax burden upward within the

income distribution.

When fiscal pressure is sufficiently increased, the optimal schedule becomes first flatter

and then U-shaped, as in Saez (2001). Flattening the marginal rate profile when fiscal

pressure is high is desirable because this delivers high average tax rates (and thus high

revenue) at the same time as keeping marginal tax rates relatively low.

Under our baseline calibration, total government spending (purchases plus transfers) is

41.8 percent of GDP under the optimal policy featuring increasing marginal rates. The

corresponding figure for the U.S. in 2015 was 33.5 percent. Saez (2001) calibrations are

associated with much higher spending levels, of around 56 percent of GDP. We conclude

that the reason he finds a U-shaped optimal profile while we do not is that the planner in

his calibration faces much greater pressure to raise revenue.

To better understand the equity versus efficiency trade-off in tax design, we formalize

measures of the marginal distributional gains and efficiency costs associated with changing
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marginal tax rates. These gains and costs are equated at all income levels at the optimum.

While both efficiency costs and distributional gains shape the optimal tax schedule, the more

constructive understanding comes from focusing on distributional gains, since this is where

the endogenous terms that respond to fiscal pressure appear.

Distributional gains from raising marginal rates are always high at the top of the income

distribution, since taxes at the top redistribute away from the richest households. Thus

the planner always sets high marginal rates at the top, tolerating the high associated effi-

ciency costs. At the bottom of the income distribution, the size of distributional gains—and

the optimal level for marginal rates—depends on fiscal pressure. When fiscal pressure is

low, distributional gains from raising marginal rates at low income levels are small because

generous lump-sum transfers, mainly funded through taxing the rich, imply that the con-

sumption distribution is relatively compressed. Thus, the planner does not want to impose

high marginal tax rates on the moderately poor to further increase lump-sum transfers that

help the very poorest. On the other hand, when the government needs to finance more

purchases, lump-sum transfers are smaller and distributional gains at low income levels are

larger. Larger distributional gains then incentivize the planner to choose higher marginal

rates at low income levels, leading to a flatter or decreasing marginal tax profile from low to

middle incomes.

We then show that introducing private insurance has similar effects to reducing required

government expenditure, in terms of the impact on the optimal tax schedule. In particular,

when private insurance is extensive, a combination of limited public transfers financed by

high taxes on the rich coupled with private insurance in the background ensures relatively

modest consumption inequality at low income levels, and thus there is no reason to impose

high marginal tax rates on the poor. In contrast, when private insurance is absent, higher

marginal tax rates at low income levels are optimal, and if the risk of very low uninsurable

productivity realizations is sufficiently large, the optimal schedule becomes U-shaped.

We use our distributional gain/efficiency loss decomposition to revisit the conditions for
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a U-shaped optimal tax schedule discussed by Diamond (1998) in the context of a preference

specification without income effects. Here we develop a new theoretical result on how raising

required government purchases changes how distributional gains vary with income, a result

that is consistent with the fiscal pressure intuition we use to interpret our numerical results.

In the rest of the paper, we consider several important extensions to our baseline analysis.

First, we consider alternatives to a utilitarian welfare criterion. We focus on a class of Pareto

weight functions in which the weight on an agent with uninsurable idiosyncratic productivity

α is exp(−θα). The parameter θ determines the planner’s taste for redistribution, with θ > 0

indicating greater than utilitarian concern for the poor. What value for θ is consistent with

the extent of redistribution built into the actual U.S. tax and transfer system? To answer

this question, we approximate the current tax system using the parametric tax and transfer

scheme adopted in Benabou (2000) and Heathcote et al. (2017), where taxes net of transfers

are given by the following function of income: T (y) = y − λy1−τ . In this scheme, which

we henceforth label “HSV,” the parameter τ indexes the progressivity of the system. We

develop a closed-form mapping between θ and the corresponding optimal choice for τ , a

mapping that can be inverted to infer the taste for redistribution for the United States,

θUS, that rationalizes the observed degree of tax progressivity, τUS. Given this “empirically

motivated” social welfare function, we find that the optimal marginal tax schedule is again

increasing, as in the utilitarian case.

Next, we compare the optimal Mirrleesian policy to the best possible policies when the

tax and transfer system is restricted to simple parametric functional forms, à la Ramsey. We

contrast two simple functional forms that are perhaps the most widely used in the literature:

affine tax functions and the HSV tax scheme. These two schemes allow us to compare two

alternative ways to redistribute income: the affine scheme allows for lump-sum transfers but

imposes constant marginal tax rates, while the HSV scheme rules out transfers but allows

for a progressive tax schedule. We find that the best policy in the HSV class is preferred to

the best policy in the affine class, indicating that tax progressivity is more important than
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lump-sum transfers.

Finally, we explore Pareto-improving tax reforms. We consider the problem of a utilitar-

ian planner who must ensure that tax reform leaves all households at least weakly better off.

We find that such a planner would lower marginal rates at the top of the income distribution

and raise them at the bottom, relative to our approximation of the current system. This

reform leads to welfare gains in the tails of the income distribution, although the average

overall welfare gain is quite small. At the Pareto-improving optimum there is a range of

values for productivity where Pareto-improving constraints bind. One interesting theoreti-

cal result is that within this range, allocations and taxes—and not just utility values—are

identical to those under the status quo tax system.

Related Literature Seminal papers in the literature on taxation in the Mirrlees tradition

include Mirrlees (1971), Diamond (1998), and Saez (2001). More recent work has focused on

extending the approach to dynamic environments: Farhi and Werning (2013) and Golosov

et al. (2016) are the most important examples. Golosov and Tsyvinski (2015) offer a survey

of the key policy conclusions from this literature.

There are also many papers on tax design in the Ramsey (1927) tradition in economies

with heterogeneity and incomplete private insurance markets. Recent examples include

Conesa and Krueger (2006), who explore the Gouveia and Strauss (1994) functional form

for the tax schedule, and Heathcote et al. (2017), who explore the HSV form developed

by Feldstein (1969), Persson (1983), and Benabou (2000). Relative to those papers, the

advantage of our non-parametric Mirrleesian approach is that we can characterize the entire

shape of the optimal tax and transfer schedule. In particular, we can explore whether and

when the optimal tax system exhibits lump-sum transfers or a non-monotone (e.g., U-shaped)

profile for marginal tax rates; the HSV functional form allows for neither property.

Our interest in constructing a Pareto weight function that is consistent with observed tax

progressivity is related to the inverse optimum taxation problem, which is to characterize

the non-parametric profile for social welfare weights that precisely rationalizes a particu-
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lar observed tax system; see Bourguignon and Spadaro (2012) and Brendon (2013). The

approach in this paper restricts the Pareto weight function to a one-parameter functional

form that only allows for a simple tilt in planner preferences toward (or against) relatively

high-productivity workers. Restricting the Pareto weight function to belong to a parametric

class is analogous to restricting the tax function to a parametric class à la Ramsey) rather

than solving for the fully optimal non-parametric Mirrlees schedule.

Werning (2007) describes how to test for Pareto efficiency of any given tax schedule, given

an underlying skill distribution. Because our approximation to the current U.S. tax and

transfer system violates several known properties of any optimal tax scheme, it is immediate

that the associated allocations are not efficient. This motivates our extension to characterize

a specific Pareto-improving reform.

Weinzierl (2014), Saez and Stantcheva (2016), and Hendren (2020) propose various inter-

esting ways to generalize interpersonal comparisons that allow one to go beyond an assess-

ment of Pareto efficiency, without insisting on a specific set of Pareto weights. For example,

Saez and Stantcheva (2016) advocate the use of generalized social marginal welfare weights,

which represent the value that society puts on providing an additional dollar of consumption

to any given individual. In contrast, all our analyses specify fixed Pareto weights ex ante.

One advantage is that we can evaluate non-marginal tax reforms, implying large differences

in equilibrium allocations, in addition to local perturbations around a given tax system.

Chetty and Saez (2010) is one of the few papers to explore the interaction between public

and private insurance in environments with private information. Section III of their paper

explores a similar environment to ours, in which there are two components of productivity

and differential roles for public versus private insurance with respect to the two components.

Like us, they conclude that the government should focus on insuring the source of risk that

cannot be insured privately. Relative to Chetty and Saez (2010), our contributions are

twofold: (i) we consider optimal Mirrleesian tax policy in addition to affine tax systems, and

(ii) our analysis is more quantitative in nature.
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2 Environment

Labor Productivity There is a unit mass of individuals. They differ only with respect

to labor productivity w, which has two orthogonal idiosyncratic components: logw = α+ ε.

The first component α ∈ A ⊂ R represents shocks that cannot be insured privately. The

second component ε ∈ E ⊂ R represents shocks that can be privately observed and perfectly

privately insured. Neither α nor ε is observed by the tax authority. A natural motivation

for the informational advantage of the private sector relative to the government with respect

to ε shocks is that these are shocks that can be observed and pooled within a family (or

other risk-sharing group), whereas the α shocks are shared by all members of the family but

differ across families.1 For the purposes of optimal tax design, the details of how private

insurance is delivered do not matter as long as the set of risks that is privately insurable

remains independent of the choice of tax system, which is our maintained assumption.

We let the vector (α, ε) denote an individual’s type and Fα and Fε denote the distributions

for the two components. We assume Fα and Fε are differentiable.

In the simplest description of the model environment, the world is static, and each agent

draws α and ε only once. However, there is an isomorphic dynamic interpretation in which α

represents fixed effects that are drawn before agents enter the economy, whereas ε captures a

mix of predictable life-cycle productivity variation and life-cycle shocks against which agents

can purchase insurance.2

1In Appendix A.1, we consider an alternative model for insurance in which there is no family and individual
agents buy insurance against ε on decentralized financial markets.

2We discuss this interpretation further in Appendix A.2. Although explicit insurance against life-cycle
shocks may not exist, households can almost perfectly smooth transitory shocks to income by borrowing
and lending. A more challenging extension to the framework would be to allow for persistent shocks to the
unobservable noninsurable component of productivity α. However, Heathcote et al. (2014) estimate that life-
cycle uninsurable shocks account for only 17 percent of the observed cross-sectional variance of log wages.
Note that in an explicit life-cycle framework one could consider the joint design of taxation and pension
systems (see, e.g., Shourideh and Troshkin 2017, Choné and Laroque 2018, or Ndiaye 2020).
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Preferences Agents have identical preferences over consumption c and work effort h. The

utility function takes the separable form

u(c, h) =
c1−γ

1− γ
− h1+σ

1 + σ
,

where γ > 0 and σ > 0. The Frisch elasticity of labor supply is 1/σ. We denote by c(α, ε)

and h(α, ε) consumption and hours worked for an individual of type (α, ε).

Technology Aggregate output in the economy is aggregate effective labor supply. Output

is divided between private consumption and a nonvalued publicly provided good G. The

resource constraint of the economy is thus

∫∫
c(α, ε)dFα(α)dFε(ε) +G =

∫∫
exp(α + ε)h(α, ε)dFα(α)dFε(ε). (1)

Insurance We imagine insurance against ε shocks as occurring via a family planner who

dictates hours worked and private within-family transfers for a continuum of agents who

share a common uninsurable component α and whose insurable shocks ε are distributed

according to Fε.

Government The planner/tax authority observes only end-of-period family income, which

we denote y(α) for a family of type α, where

y(α) =

∫
exp(α + ε)h(α, ε)dFε(ε). (2)

The tax authority does not directly observe α or ε, does not observe individual wages or

hours worked, and does not observe the within-family transfers associated with within-family

private insurance against ε.

Let T (·) denote the income tax schedule. Given that it observes income and taxes col-
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lected, the authority also effectively observes family consumption, since

∫
c(α, ε)dFε(ε) = y(α)− T (y(α)) . (3)

Family Head’s Problem The timing of events is as follows. The family first draws a

single α ∈ A. The family head then solves

max
{c(α,ε),h(α,ε)}ε∈E

∫ [
c(α, ε)1−γ

1− γ
− h(α, ε)1+σ

1 + σ

]
dFε(ε) (4)

subject to (2) and the family budget constraint (3).3 The first-order conditions (FOCs) are

c(α, ε) = c(α) = y(α)− T (y(α)), (5)

h(α, ε)σ = [y(α)− T (y(α))]−γ exp(α + ε) [1− T ′(y(α))] . (6)

The first FOC indicates that the family head wants to equate consumption within the family.

The second indicates that the family equates—for each member—the marginal disutility of

labor supply to the marginal utility of consumption times individual productivity times one

minus the marginal tax rate on family income. If the tax function satisfies

T ′′(y) > −γ [1− T ′(y)]2

y − T (y)
(7)

for all feasible y, then the second derivative of family welfare with respect to hours for any

type (α, ε) is strictly negative, and the first-order conditions (5) and (6) are sufficient for

optimality.

Equilibrium Given the income tax schedule T , a competitive equilibrium for this economy

is a set of decision rules {c, h} such that

3In Appendix A.3, we show that allowing the planner to observe and tax income (after within-family
transfers) at the individual level would not change the solution to the family head’s problem. Thus, there
would be no advantage to taxing at the individual rather than the family level.

9



(i) The decision rules {c, h} solve the family’s maximization problem (4),

(ii) The resource feasibility constraint (1) is satisfied, and

(iii) The government budget constraint is satisfied:
∫
T (y(α))dFα(α) = G.

3 Planner’s Problems

The planner maximizes social welfare given Pareto weights W (α) that may vary with α.4

3.1 Mirrlees Problem: Constrained Efficient Allocations

In the Mirrlees formulation of the program that determines constrained efficient allocations,

we envision the Mirrlees planner interacting with family heads for each α type. Thus, each

family is effectively a single agent from the perspective of the planner. The planner chooses

both aggregate family consumption c(α) and income y(α) as functions of the family type

α. The Mirrleesian planner’s problem includes incentive constraints that guarantee that for

each and every type α, a family of that type weakly prefers to deliver to the planner the

value for income y(α) the planner intends for that type, thereby receiving c(α), rather than

delivering any alternative level of income.

The timing within the period is as follows. Families first decide on a reporting strategy

α̂ : A → A. Each family draws α ∈ A and makes a report α̃ = α̂(α) ∈ A to the planner. In

a second stage, given the values for c(α̃) and y(α̃), the family head decides how to allocate

consumption and labor supply across family members.

4We assume symmetric weights with respect to ε to focus on the government’s role in providing public
insurance against privately uninsurable differences in α. In addition, we will show that constrained efficient
allocations cannot be conditioned on ε.
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Family Problem As a first step toward characterizing efficient allocations, we start with

the second stage. Taking as given a report α̃ = α̂(α) and a draw α, the family head solves

U(α, α̃) ≡ max
{c(α,α̃,ε),h(α,α̃,ε)}ε∈E

∫ [
c(α, α̃, ε)1−γ

1− γ
− h(α, α̃, ε)1+σ

1 + σ

]
dFε(ε), (8)

subject to

∫
c(α, α̃, ε)dFε(ε) = c(α̃),∫
exp(α + ε)h(α, α̃, ε)dFε(ε) = y(α̃).

Solving this problem gives the following indirect utility function:

U(α, α̃) =
c(α̃)1−γ

1− γ
− Ω

1 + σ

(
y(α̃)

exp(α)

)1+σ

, where Ω =

(∫
exp(ε)

1+σ
σ dFε(ε)

)−σ
. (9)

First-Stage Planner’s Problem The planner maximizes social welfare, evaluated ac-

cording to W (α), subject to the resource constraint and to incentive constraints:

max
{c(α),y(α)}α∈A

∫
W (α)U(α, α)dFα(α), (10)

subject to

∫
c(α)dFα(α) +G =

∫
y(α)dFα(α), (11)

U(α, α) ≥ U(α, α̃) for all α and α̃. (12)

Note that ε does not appear anywhere in this problem (the distribution Fε is buried in the

constant Ω). The problem is therefore identical to a standard static Mirrlees type problem,

where the planner faces a distribution of agents with heterogeneous unobserved productivity

α.5 We will solve this problem numerically.

Decentralization with Income Taxes Instead of thinking of the planner as offering

agents a menu of alternative pairs for income and consumption, we can instead conceptu-

alize the planner offering a mapping from any possible value for family income to family

consumption. Such a schedule can be decentralized via a tax schedule on family income y of

5Note that the weight on hours in the agents’ utility function is now Ω rather than 1.
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the form T (y) that defines how rapidly consumption grows with income.6

Substituting the first-order condition with respect to hours (6) into the second constraint

in problem (8) and letting c∗(α) and y∗(α) denote the values for family consumption and

income that solve the Mirrlees problem (10), we can recover how optimal marginal tax rates

vary with income:

1− T ′ (y∗(α)) =
Ω

c∗(α)−γ exp(α)

(
y∗(α)

exp(α)

)σ
. (13)

3.2 Ramsey Problem

We use the label “Ramsey planner” to describe a planner who chooses the optimal tax

function in a given parametric class T . For the class of affine functions, T = {T : R+ →

R|T (y) = τ0 + τ1y for y ∈ R+, τ0 ∈ R, τ1 ∈ R}. For the HSV class, T = {T : R+ → R|T (y) =

y − λy1−τ for y ∈ R+, λ ∈ R+, τ ∈ [−1, 1]}.

The Ramsey problem is to maximize social welfare by choosing a tax schedule in T

subject to allocations being a competitive equilibrium:

max
T∈T

∫
W (α)

∫
u(c(α, ε), h(α, ε))dFε(ε)dFα(α) (14)

subject to (1) and to c(α, ε) and h(α, ε) being solutions to the family problem (4).7

6Note that some values for income might not feature in the menu offered by the Mirrlees planner. Those
values will not be chosen in the income tax decentralization if income at those values is heavily taxed.

7Note that in the affine tax function case, condition (7) is satisfied because

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= γ

(1− τ1)
2

y − T (y)
> 0.

In the HSV tax function case, condition (7) becomes

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= λy(−τ−1) (1− τ) [τ + γ (1− τ)] > 0.

This is satisfied for any progressive tax, τ ∈ [0, 1), because τ + γ (1− τ) > 0. It is also satisfied for any
regressive tax, τ < 0, if γ ≥ 1, because γ ≥ 1 > −τ

1−τ . Therefore, for all relevant parameterizations, condition
(7) is also satisfied for this class of tax functions.
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3.3 Decomposing the Trade-offs in Setting Tax Rates

We now describe a decomposition of the welfare effects of changing marginal tax rates at

different points along the income distribution, which we will use later to develop intuition

about the shape of the optimal marginal tax schedule. This decomposition is similar to

the expressions developed by Diamond (1998) and Saez (2001).8 One advantage of our

decomposition, which we will later exploit, is that it can be used to evaluate the welfare

effects of tax reform starting from any tax system, even if it is non-optimal.9

Consider the effect of increasing the marginal tax rate at some income level ŷ, so as to

collect one dollar more from everyone with income above ŷ. Assume that all extra revenue

generated is used to increase lump-sum transfers. Consider, first, the hypothetical welfare

gain that this reform would deliver if there was no behavioral response. The revenue collected,

and thus the increase in lump-sum transfers, would be 1 − Fy(ŷ), where Fy denotes the

distribution of income. The value of an extra dollar of lump-sum transfers to the planner

is the Pareto-weighted average marginal utility of consumption, χ ≡
∫∞

0
Wy(y)uc(y)dFy(y)

where Wy(y(α)) ≡ W (α) and uc(·) is the marginal utility of consumption. The welfare cost

to the planner from raising a dollar from all households earning above ŷ is the (weighted)

average marginal utility of that set of households. Thus, the distributional welfare gain from

the reform is [1− Fy(ŷ)]χ −
∫∞
ŷ
Wy(y)uc(y)dFy(y). It is convenient to measure this gain in

units of consumption per hypothetical dollar of revenue collected. Thus, we define

D(ŷ) ≡ 1−
∫∞
ŷ
Wy(y)uc(y)dFy(y)

[1− Fy(ŷ)]χ
. (15)

The cost of this tax reform is that it will reduce labor supply and thus tax revenue. We

define the efficiency cost of the reform due to behavioral responses to be the revenue that

8In Appendix B.2, we also derive the standard Diamond-Saez formula for our economy.
9Equation (19) in Saez (2001) includes the multiplier on the government budget constraint at the optimum

(see his footnote 14), but there is no such multiplier in our equation. Thus, our expressions can be used
away from the optimum, where this multiplier is not well defined.

13



would be collected from increasing the marginal tax rate at ŷ absent a behavioral response

(i.e., 1 − Fy(ŷ)), minus the actual extra transfers that can be funded in equilibrium, which

we denote ∆Tr(ŷ). Again, we express this measure per unit of hypothetical revenue. Thus,

E(ŷ) = 1− ∆Tr(ŷ)

1− Fy(ŷ)
.

This efficiency cost measure can be interpreted as the fraction of hypothetical revenue

that leaks away because of behavioral responses: if ∆Tr(ŷ) = 1− Fy(ŷ), there is no leakage

and E(ŷ) = 0, whereas if ∆Tr(ŷ) = 0, there is 100 percent leakage and E (ŷ) = 1.10

If the tax system is optimal, the distributional gain from our hypothetical tax reform

exactly equals the efficiency cost at every income level, and the equation D(ŷ) = E(ŷ) is the

standard Diamond-Saez formula.

4 Calibration

Preferences Our baseline calibration assumes preferences are logarithmic in consumption:

u(c, h) = log c− h1+σ

1 + σ
.

This balanced growth specification is the same one adopted by Heathcote et al. (2017). We

choose σ = 2 so that the Frisch elasticity (1/σ) is 0.5. This value is consistent with the

microeconomic evidence (see, e.g., Keane 2011) and is very close to the value estimated

by Heathcote et al. (2014). The compensated (Hicks) elasticity of hours with respect to

the marginal net-of-tax wage is approximately equal to 1/(1 + σ) (see Keane 2011, eq. 11)

10This efficiency cost can be written as

E(ŷ) =
−I(0)

1− I(0)
− 1

1− Fy(ŷ)

S(ŷ)− I(ŷ)

1− I(0)
,

where S(y) < 0 denotes the revenue loss from households at income level y working less because of a
substitution effect, and I(y) < 0 denotes the loss in revenue from all individuals with income above y
working less via a wealth effect because they receive an extra dollar of unearned income. See Appendix B.1
for the derivation.
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which, given σ = 2, is equal to 1/3. Again, this value is consistent with empirical estimates:

Keane reports an average estimate across 22 studies of 0.31. Given our model for taxation,

the elasticity of average income with respect to one minus the average income-weighted

marginal tax rate is also equal to 1/(1 + σ).11 According to Saez et al. (2012), the best

available estimates for the long-run version of this elasticity range from 0.12 to 0.40.

Tax and Transfer System The class of tax functions that we label “HSV ”was perhaps

first used by Feldstein (1969) and introduced into dynamic heterogeneous agent models by

Persson (1983) and Benabou (2000).

Heathcote et al. (2017) begin by noting that the HSV tax function implies a linear

relationship between log(y) and log (y − T (y)), with a slope equal to 1 − τ . Thus, given

micro data on household income before taxes and transfers and income net of taxes and

transfers, it is straightforward to estimate τ by ordinary least squares. Using micro data

from the Panel Study of Income Dynamics (PSID) for working-age households over the period

2000 to 2006, Heathcote et al. (2017) estimate τ = 0.181.

The remaining fiscal policy parameter λ is set such that government purchases G is equal

to 18.8 percent of model GDP, which was the average ratio of government purchases to

output in the United States over the 2000-2006 period.12 When we evaluate alternative tax

policies, we always hold fixed G at its baseline value.

Wage Distribution and Insurance Our strategy for calibrating the model distribution

of wages and the relative importance of uninsurable versus insurable shocks is as follows.

First, we assume that log wages are drawn from an exponentially modified Gaussian (EMG)

distribution. Second, we parameterize the overall wage variance and the fraction of this

variance that is privately uninsurable to replicate the observed cross-sectional variances of

log earnings and log consumption, exploiting the standard result that uninsurable wage risk

11The average income-weighted marginal tax rate is 1− (1− g)(1− τ), where g is the ratio of government
purchases to output (see Heathcote et al. 2017, eq. 4).

12National Income and Product Accounts, Table 1.1.10. Heathcote et al. (2017) use the same value.
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will show up in consumption, whereas insurable shocks will not.13

We assume that the insurable component of productivity is normally distributed, ε ∼

N(−σ2
ε/2, σ

2
ε), and that the uninsurable component follows an EMG distribution: α = αN +

αE, where αN ∼ N(µα, σ
2
α) and αE ∼ Exp(λα) so that α ∼ EMG(µα, σ

2
α, λα). It follows

that the log wage, logw = α + ε, is itself EMG (the sum of the two normally distributed

random variables αN and ε is normal), so the level wage distribution is Pareto lognormal.

Given our baseline HSV tax system, the equilibrium distributions for log earnings and

log consumption are also EMG with14

Var (log y) =

(
1 + σ

σ

)2

σ2
ε + σ2

α +
1

λ2
α

, (16)

Var (log c) = (1− τ)2σ2
α +

(1− τ)2

λ2
α

. (17)

Our calibration strategy is to first use an empirical distribution for log earnings to estimate

the normal variance σ2
y =

(
1+σ
σ

)2
σ2
ε + σ2

α and the tail parameter λα. Given our external

estimates for σ and τ and this estimate for λα, we then use an estimate for the variance of

log consumption to infer σ2
α from eq. (17). Finally, given σ2

α and λα, the variance of log

13One measurement issue we need to address is that some of the observed cross-sectional inequality in earn-
ings and consumption reflects systematic variation by age, but there is no notion of age in our static model.
To guide our calibration choices here, Appendix A.2 lays out a simple life-cycle overlapping-generations
model with both predictable life-cycle variation in wages and idiosyncratic insurable life-cycle shocks. We
show that our benchmark static model is isomorphic to this extended model, as long as the static model
is calibrated to replicate total cross-sectional dispersion in wages, earnings, and consumption, with both
predictable wage changes and life-cycle shocks captured in the insurable component of wages.

14Equilibrium allocations for hours, individual earnings, and consumption are given by

h(ε) = (1− τ)
1

1+σ

{
E
[
exp(ε)

1+σ
σ

]} −1
1+σ

exp

(
1

σ
ε

)
,

y(α, ε) = (1− τ)
1

1+σ

{
E
[
exp(ε)

1+σ
σ

]} −1
1+σ

exp(α) exp

(
1 + σ

σ
ε

)
,

c(α) = λ (1− τ)
1−τ
1+σ

{
E
[
exp(ε)

1+σ
σ

]}σ(1−τ)
1+σ

exp((1− τ)α).

Note that hours worked are independent of the uninsurable shock α—preferences have the balanced growth
property—whereas the elasticity of hours to the insurable shock ε is exactly the Frisch elasticity. The
elasticities of log earnings (log productivity plus log hours) to uninsurable and insurable shocks are therefore 1
and 1+ 1

σ , respectively. Consumption does not respond to insurable shocks, and the elasticity of consumption
to uninsurable shocks is 1− τ .

16



earnings (16) residually exactly identifies σ2
ε .

As Mankiw et al. (2009) emphasize, it is difficult to sharply estimate the shape of the

productivity distribution given typical household surveys, such as the Current Population

Survey (CPS), in part because high-income households tend to be underrepresented in these

samples. We therefore turn to the Survey of Consumer Finances (SCF), which uses data

from the Internal Revenue Service (IRS) Statistics of Income program to ensure that wealthy

households are appropriately represented. We estimate λα and σ2
y by maximum likelihood,

searching for the values of the three parameters in the EMG distribution that maximize the

likelihood of drawing the observed 2007 distribution of log labor income.15 The resulting

estimates are λα = 2.2 and σ2
y = 0.412, implying a total variance for log earnings of 0.618.16

Figure 1 plots the empirical density against the estimated EMG distribution and a normal

distribution with the same mean and variance. The density is plotted on a log scale to

magnify the tails. It is clear that the heavier right tail that the additional parameter in the

EMG specification introduces delivers an excellent fit, substantially improving on the normal

specification.

We require an estimate of the cross-sectional variance of log consumption to calibrate the

variance of α. Using the Consumer Expenditure Survey, Heathcote et al. (2010, figure 13)

report a variance of 0.332 in 2006.17 However, Heathcote et al. (2014, table 3) estimate that

29.6 percent of the variance of measured consumption reflects measurement error, implying a

true variance of 0.234.18 Given λα = 2.2, the model replicates this variance when σ2
α = 0.142.

Finally, using eq. (16) to residually infer σ2
ε gives σ2

ε = 0.120. In Section 5.2, we will explore

15The empirical distribution for labor income in 2007 is constructed as follows. We define labor income
as wage income plus two-thirds of income from business, sole proprietorship, and farm. We then restrict
our sample to households with at least one member aged 25-60 and with household labor income of at least
$10,000.

16Bootstrapped 95 percent confidence intervals for the point estimates for λα and σ2
y are [1.86,2.56] and

[0.303,0.501], respectively.
17Other estimates in the literature are consistent with this estimate. Meyer and Sullivan (2017, figures 6

and 7) report 90/50 and 50/10 percentile ratios in the mid-2000s that are both close to 2. The same ratios
are also close to 2 in Heathcote et al. (2010, figure 13). Attanasio and Pistaferri (2014, figure 1) report a
standard deviation of log consumption in the PSID of around 0.6, implying a variance of 0.36.

18They estimate that none of the measured variance of earnings reflects measurement error.
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Figure 1: Fit of EMG distribution. The figure plots the empirical earnings density from the
SCF against the estimated EMG distribution and against a normal distribution.

how changing the relative magnitudes of insurable and uninsurable wage risk changes the

optimal tax schedule. Given all these values, the total model variance for log wages is

σ2
ε + σ2

α + λ−2
α = 0.469. For comparison, Heathcote et al. (2010, figure 5) report a similar log

wage variance for men of 0.499 in the CPS in 2005.

We have documented that our assumptions on the wage distribution deliver an extremely

close approximation to the top of the earnings distribution, as reflected in the SCF. It is also

important to assess whether we accurately capture the distribution of labor productivity at

the bottom. A well-known challenge here is that some low productivity workers choose not

to work, and thus their productivity cannot be directly observed. Low and Pistaferri (2015)

estimate a rich structural model of participation in which workers face disability risk and can

apply for disability insurance. Table 1 compares statistics for the left tail of our calibrated

productivity distribution to corresponding statistics from the distribution of latent offered

wages from their estimated model.19 Reassuringly, the two sets of statistics are very similar.

Our calibration is designed to replicate the empirical variance of log consumption, but it

is also important to ask whether it implies a realistic shape for the consumption distribution.

19We thank Low and Pistaferri for sharing their estimates.
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Table 1: Model Productivity Distribution and Offered Wage Distribution in Low and Pistaferri

Percentile Ratios Model Low and Pistaferri

P5/P1 1.46 1.48

P10/P5 1.23 1.20

P25/P10 1.42 1.40

Note: Px denotes the xth percentile.

Because we have attributed the heavy right tail in the log wage distribution to the uninsurable

component of wages, the model implies a heavy right tail in the distribution for consumption.

Toda and Walsh (2015) estimate that the distribution of household consumption does in fact

have fat tails, and they estimate an average right tail Pareto parameter of 3.38. The value for

λc implied by our estimates is similar at 2.69, providing empirical support for our assumption

that the exponential component of log wages is uninsurable.

Units Given our baseline model calibration, the model implies values for average earnings

and average hours worked which we denote Y and H respectively. For the purpose of

comparing model to data it is convenient to rescale model units. We will target average

annual earnings in our 2007 SCF household sample, which is Ȳ = $77, 326. The SCF does

not collect information on hours worked, so for an empirical target for average household

hours we turn to the CPS. When using the same selection for age of household head (25–60)

as in the SCF, average annual household hours worked in 2007 in the CPS are H̄ = 3, 075.20

When plotting model allocations we scale model earnings, consumption and taxes by a

factor Ȳ /Y , and wages by w̄ ≡ (Ȳ /Y )/(H̄/H). In Appendix C, we provide the theoretical

justification for rescaling model variables in this fashion.

Discretization In solving the Mirrlees problem to characterize efficient allocations, the

incentive constraints only apply to the uninsurable component of the wage α, and the dis-

tribution for ε appears only in the constant Ω. Thus, there is no need to approximate the

20Using the same income definition (wage and salary income plus two-thirds of self-employment income)
as in the SCF, average income in the CPS is $67, 753. It is thus somewhat lower than in the SCF. This likely
reflects under-representation of high income households in the CPS.
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distribution for ε, and we therefore assume these shocks are drawn from a continuous un-

bounded normal distribution with mean −σ2
ε/2 and variance σ2

ε .

We take a discrete approximation to the continuous EMG distribution for α that we have

discussed thus far. We construct a grid of I evenly spaced values {α1, · · · , αI} with corre-

sponding probabilities {π1, · · · , πI} as follows. We make the endpoints of the grid, α1 and αI ,

sufficiently extreme that only a tiny fraction of individuals lie outside these bounds in the true

continuous distribution. In particular, we set α1 such that exp(α1)/
∑

i (πi exp(αi)) = 0.05

and set αI such that exp(αI)/
∑

i (πi exp(αi)) = 74, which corresponds to household labor

income at the 99.99th percentile of the SCF labor income distribution ($6.17 million).21 We

read corresponding probabilities πi directly from the continuous EMG distribution, rescaling

to ensure that (i)
∑

i πi = 1, (ii)
∑

i πi exp(αi) = 1, and (iii) the variance of (discretized)

α is equal to σ2
α + λ−2

α . For our baseline set of numerical results, we set I = 10, 000. The

resulting model distribution for α is plotted in panel A of figure 2. The distribution appears

continuous, even though it is not, because our discretization is very fine. In Heathcote and

Tsujiyama (2021), we show that a very fine grid is required to accurately solve the Mirrlees

problem.

5 Quantitative Analysis

We explore the structure of the optimal tax and transfer system, given the model specification

described above.22 We assume that the Pareto weight function takes the form

W (α; θ) =
exp(−θα)∫

exp(−θα)dFα(α)
for α ∈ A. (18)

Here the parameter θ controls the planner’s taste for redistribution. With a negative (pos-

itive) θ, the planner puts relatively high weight on more (less) productive households. We

21Given Y/H = exp(
σ2
ε

σ ) = 1.06, the average hourly wage is w̄ = (Ȳ /Y )/(H̄/H) = $23.68, so 5 percent of
the average corresponds to $1.18, which is less than a quarter of the federal minimum wage in 2007 ($5.85).
Reducing α1 further would not materially affect any of our results, since given the parameters for the EMG
distribution, the probability of drawing α < log(0.05) is vanishingly small.

22In Appendix D.1, we explain how we numerically solve the Mirrlees optimal tax problem.
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focus initially on a utilitarian social welfare function, θ = 0, with equal Pareto weights on

all households.

5.1 Increasing Optimal Marginal Tax Rates

The extensive literature exploring the Mirrlees optimal taxation problem has established

that the shape of the optimal tax schedule is sensitive to all elements of the environment,

including the shape of the skill distribution, the form of the utility function, the planner’s

taste for redistribution, and the government revenue requirement (see, for example, Tuomala

1990). However, starting from the influential papers of Diamond (1998) and Saez (2001),

most quantitative applications of the theory to the United States have found a U-shaped

profile for optimal marginal tax rates.23

Figure 2 plots the marginal and average tax schedules (panels A and B) that decentralize

the constrained efficient allocation against the baseline HSV approximation to the current

U.S. tax and transfer system (HSVUS).24 In contrast to Diamond and Saez, optimal marginal

tax rates are always increasing in income (except at the very top).25 The marginal rate starts

at 5.5 percent for the least productive households, is fairly flat (between 30 and 40 percent)

for households making up to around $15 per hour, and rises rapidly to peak at 66.9 percent

for those making around $350 per hour.26 Panel A indicates that the optimal schedule

imposes much higher marginal tax rates than our approximation to the current U.S. system:

the average income-weighted marginal tax rate is 49.1 percent, compared to 33.5 percent

under the current policy (see table 2).

Panel C plots the distributional gain D (α) (equivalently, the efficiency cost E (α)) from

changes to marginal tax rates starting from the optimal policy (see Section 3.3 for the defi-

23See also Diamond and Saez (2011) and Golosov et al. (2016).
24The profiles for marginal and average tax rates look very similar plotted against log household income

rather than against log household productivity. Figure A1 in Appendix E plots the marginal tax rate against
the level of income.

25Like us, Tuomala (2010) finds an increasing marginal rate schedule to be optimal. However, his results
hinge on assuming a utility function that is quadratic in consumption with a bliss point.

26Because our discrete distribution for α is bounded, the Mirrleesian marginal tax rate drops to zero at
the very top. However, marginal tax rates only dip very close to the upper bound for α, the choice for which
is somewhat arbitrary.
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Figure 2: Optimal Tax Policy. Panels A and B plot the optimal Mirrleesian tax schedules against
the baseline HSV approximation to the U.S. tax and transfer system and the productivity density.
Panels C and D plot the distributional gain (equivalently, the efficiency cost) under the optimal
policy. Panels E and F plot decision rules for consumption and hours worked. The x axis for each
plot shows the household average wage, w̄ exp(α). Hours are defined as household earnings divided
by the household average wage. The area between the 5th and 95th percentiles is shaded gray.

nitions of these measures).27 Panel D plots the distributional gain/efficiency cost multiplied

by the Mills ratio [1−Fα(α)]/fα(α). Note that this plot qualitatively resembles the optimal

marginal tax schedule in panel A. In fact, the two series would be exactly proportional under

a preference specification without income effects (see Section 5.3). This resemblance indi-

cates that if we can understand what drives distributional gains, we can better understand

27In Appendix B.1, we describe how we derive D(α) and E(α) from D(y) and E(y).
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optimal taxation.28

In our baseline calibration, distributional gains are large at high income levels because

these households enjoy much higher consumption than the poor (see panel E). Thus, the

planner wants high marginal tax rates on the rich to finance lump-sum transfers. Because

these distributional gains are so large, the planner tolerates equally large efficiency costs.

For example, at α = ln(3) (i.e., at three times average productivity or a wage of $71 per

hour), the efficiency cost is 0.71, indicating that 71 percent of every hypothetical marginal

dollar in tax revenue leaks away via behavioral responses. As we increase α further, the

efficiency cost rises further toward one. This reflects the well-known result that a planner

with a concern for equity will seek to maximize redistribution down from the very richest

households.29 It is over the rest of the income distribution that the shape of the optimal

marginal tax schedule is less well understood and where our results disagree with Diamond

(1998) and Saez (2001).

In our calibrated model, the tax revenue generated by soaking the rich funds sufficiently

generous lump-sum transfers ($15,400 or 21.5 percent of average income) that consumption

inequality across the bottom half of the productivity distribution is quite low (see panel E).

Thus, the distributional gains from raising marginal rates at low income levels are very small,

implying that the planner does not want to set high (and highly distortionary) marginal tax

rates in this part of the income distribution. For example, at α = ln(1/3) ($7.89 per hour)

the efficiency cost is only 0.03, indicating that the planner chooses not to raise the marginal

rate here even though only 3 percent of each marginal tax dollar would leak away. Because

28In Section 5.3, we will further develop the argument that understanding how distributional gains vary
with productivity is the key to understanding the shape of the optimal tax schedule.

29Assuming an unbounded Pareto distribution for earnings, the well-known formula for the rate that
maximizes revenue collection from the most productive households (eq. 9 in Saez 2001) is T̄ ′ =[
1 + ζ̄u + ζ̄c(λ∗y − 1)

]−1
= σ+γ

σ+λ∗
y
, where T̄ ′, ζ̄u and ζ̄c are limiting values of the marginal tax rate and

uncompensated and compensated labor supply elasticities, and where λ∗y is the Pareto parameter defining

the right tail of the optimal earnings distribution. Given our utility function, ζ̄u = 1−γ
σ+γ , ζ̄

c = (σ + γ)−1,

and λ∗y = λα
σ+γ
1+σ . In the baseline case where γ = 1, we obtain T̄ ′ = 1+σ

σ+λα
. Note that this expression is

independent of the value for government purchases. Evaluated at our calibrated values for σ and λα, the
above equation implies that there is nothing to be gained from raising marginal rates above 71.4 percent at
the top.
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Table 2: Key Statistics

Model Outcomes

T ′ Tr Tr
Y

Tr+G
Y

ω ∆Y

HSVUS 33.5 1, 753 2.3 21.1 — —

Baseline 49.1 15, 400 21.5 41.8 2.07 −7.32

High Risk Aversion: γ = 2 59.8 22, 722 32.1 52.9 5.12 −9.63

High Labor Elasticity: σ = 1 42.6 12, 310 17.4 37.4 0.87 −5.85

High Government Expenditure: g = 0.4 52.9 5, 633 7.3 47.8 0.19 −1.07

No Insurable Shocks: High Normal Var. 58.6 21, 586 32.5 53.8 8.63 −11.57

Note: T ′ is the average income-weighted marginal tax rate in percent. Tr is transfers defined as consump-
tion minus income for the lowest earning household in 2007 dollars. Tr

Y is transfers as a percentage of average

income. Tr+G
Y is total government spending, measured as transfers plus government purchases, as a percent-

age of average income. ω is the welfare gain of moving from the current tax system T to the optimal one
T̂ , defined as the percentage increase in consumption for all agents under policy T that leaves the planner
indifferent between T and T̂ . ∆Y is the associated percentage change in aggregate output.

distributional gains are very small at low income levels, optimal marginal tax rates are much

lower at low income levels than at high income levels. At the very bottom of the income

distribution, bunching is optimal in our economy, implying marginal tax rates that rise

quickly with wages.30

An upward-sloping profile for marginal tax rates is desirable because it pushes the tax

burden upward within the income distribution, allowing the planner to redistribute from

the richest agents toward everyone else. Thus, equity considerations will generally dictate

an upward-sloping marginal tax schedule. From an efficiency standpoint, in contrast, a

downward-sloping profile for marginal rates is preferred because such a profile implies that

agents face relatively low marginal tax rates—implying modest distortions—but relatively

high average tax rates—translating into high revenue. Under our baseline model calibration,

the fact that the optimal marginal tax schedule is upward sloping indicates that equity

concerns dominate.

Table 2 reports some properties of taxes and transfers under our approximation to the

30Plotted against income, marginal tax rates jump upwards at the income bunching value. We discuss this
bunching in more detail in Appendix E.
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current US tax and transfer system (HSVUS), under the optimal policy given the baseline

parameterization, and under optimal policy for various alternative parameterizations.

Robustness We now show that our finding of an upward-sloping optimal marginal tax

schedule is robust to a range of alternative values for the risk aversion coefficient, γ, and the

curvature parameter over labor supply, σ.31

We start by considering γ = 2 and γ = 5, and compare the optimal tax schedule in

these cases to the one under our baseline logarithmic specification (γ = 1). Panel A of

figure 3 plots optimal marginal tax rates.32 With higher risk aversion, the planner chooses

uniformly higher marginal tax rates. The optimal marginal tax schedule becomes flatter

as γ is increased, but remains generally upward-sloping. There are two forces behind these

higher tax rates. First, with more curvature in utility, the planner sees larger gains from

redistribution, pointing to higher tax rates to fund larger transfers. Second, the larger is γ,

the stronger are income effects in labor supply choices. Higher tax rates therefore depress

labor supply by less, especially toward the top of the productivity distribution, because the

depressing effect of taxes on consumption is associated with a stronger positive income effect

on labor supply.

Thus, as risk aversion increases, the optimal tax and transfer system becomes much more

redistributive, with the average income-weighted marginal tax rate rising from 49.1 percent

when γ = 1 to 59.8 percent when γ = 2, and net transfers for the least productive households

rising to $22, 722 (see table 2).

Next we turn to the elasticity of labor supply. Panel B of figure 3 describes the optimal

marginal tax rates when σ = 1 and σ = 4, implying Frisch elasticities of 1 and 0.25,

respectively, in addition to the baseline case in which σ = 2. When labor supply is more

31We leave all other parameters unchanged, besides the value for public consumption G that must be
financed. We adjust G each time we change γ or σ so that the ratio of government purchases to output in
the economy with HSV taxation remains identical to the value in the data. In Appendix G we discuss these
exercises in more detail and conduct extensive additional sensitivity analyses.

32To avoid the visual distraction of the zero-top-tax-rate property, we have truncated the visible range
for wages at the 99.95th percentile of the baseline model distribution for α in this figure and in subsequent
similar ones.
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Figure 3: Sensitivity. The figure plots the optimal Mirrleesian tax schedules with higher risk
aversion (panel A) and with a higher/lower labor supply elasticity (panel B).

(less) elastic, the efficiency cost of taxation is larger (smaller), and optimal marginal tax

rates are reduced (increased). With σ = 1, the optimal policy is closer to our approximation

to the current one, and the welfare gains from the optimal reform are smaller.

5.2 High Fiscal Pressure and U-Shaped Optimal Taxes

We will now show that alternative model parameterizations in which the planner faces greater

fiscal pressure can change the trade-off and thus the shape of the optimal tax schedule. The

main message will be that a downward-sloping or U-shaped marginal tax schedule is optimal

when there are large distributional gains from imposing high marginal tax rates at low

income levels. Such gains can arise when (i) the government must deliver high government

consumption, which crowds out lump-sum transfers, or (ii) when there are many very low

productivity households. Neither of these scenarios applies to our baseline calibration to the

United States, but these experiments are useful for better understanding what shapes the

optimal tax schedule. In Section 5.4 we show that a U-shaped optimal profile also emerges

when the planner puts very high welfare weight on low-productivity households.

Increasing Government Purchases Panel A of figure 4 plots the optimal marginal tax

schedules when we increase G from the baseline value (18.8 percent of output under the

HSVUS policy) to higher levels (40 percent and 70 percent). Panel B plots the corresponding

distributional gain/efficiency cost functions, in each case relative to the baseline.
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Figure 4: Increasing Fiscal Pressure. Panels A and B plot the optimal marginal tax schedules
and the corresponding distributional gains for different values of government purchases. For
example, the line labeled g = 0.4 corresponds to a value for G equal to 40 percent of output
under the HSVUS policy. Likewise, panels C and D are the economies with no insurable shocks
and higher uninsurable risk. The dotted lines indicate when the uninsurable risk has a high
normal variance, and the dashed lines indicate when the uninsurable risk has a thick left
exponential tail.

Raising required expenditure leads the government to raise marginal tax rates across the

productivity distribution and by much more at low productivity levels. The result is that

the schedule eventually becomes generally U-shaped.33 This new pattern of marginal rates

is optimal because a higher required expenditure squeezes lump-sum transfers (see table

2), which in turn amplifies the gains from redistributing downward even from relatively

unproductive agents (panel B). This leads the planner to impose high marginal tax rates

at relatively low productivity levels, thereby sacrificing redistribution to the middle class

in order to focus on the very poorest.34 Distributional gains near the top of the income

33We add the caveats that the marginal rate is still increasing in the very low productivity interval where
bunching occurs and still declines to zero at the very top.

34Slemrod et al. (1994) explored the sensitivity of optimal policy with respect to the government’s revenue
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distribution are always close to one at the optimum, the maximum possible value, because

asking the rich to pay higher taxes always has a small negative effect on social welfare.

Thus distributional gains at the top do not rise much when fiscal pressure is increased. A

complementary way to frame the intuition for the effect of raising the revenue requirement is

that increasing fiscal pressure on the planner leads it to prioritize a more efficient tax system

(i.e., flatter/declining marginal tax rates) over a more redistributive one.

Of course, the level of G is not the only parameter determining the shape of the optimal

tax schedule. The shape of the productivity distribution also plays an important role. In

particular, efficiency costs from taxation are proportional to the productivity density, and

thus the government wants to keep marginal rates relatively low where the heaviest popula-

tion mass is located. This plays a role in generating a U-shaped tax schedule for high values

for G. In particular, there is always some convexity in the middle of the optimal marginal tax

schedule, which depresses rates around the mode of the wage distribution. This convexity

appears as something resembling an upward step in the marginal tax schedule when G is

low and as a U-shape when G is high.35

The Diamond-Saez implicit formula for optimal marginal tax rates only limited intuition

for the link between fiscal pressure and optimal taxation. That formula for our economy is

T ′(y(α))

1− T ′(y(α))
= (1 + σ)

1− Fα(α)

fα(α)

∫ ∞
α

[
1− W (s) · C

c(s)

]
c(s)

c(α)

dFα(s)

1− Fα(α)
,

where C denotes aggregate (and average) consumption.36 The problem is that this expression

is formally identical for all values for G! The value for G does affect the right-hand side of the

formula via the endogenous consumption allocation, but the consumption allocation varies

with G only because the optimal tax schedule itself varies with G.

requirement in a two-tax-bracket economy. They found that the optimal marginal tax rate in the bottom
bracket is more sensitive to the revenue requirement than the rate in the top bracket. However, they
consistently found decreasing marginal rates to be optimal, in contrast to our baseline calibration results.

35We have verified that if G is increased sufficiently, the optimal tax schedule eventually becomes mono-
tonically declining.

36See Appendix B.2 for the derivation and a longer discussion.
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Increasing Uninsurable Risk The only parameters we have not yet explored are those

describing the distribution for idiosyncratic labor productivity, and the extent to which this

dispersion can be insured privately.

Panel C of figure 4 plots the optimal marginal schedules when we assume there are no in-

surable shocks—a lower bound for the extent of private insurance—and increase uninsurable

risk to leave the total model variance of earnings unchanged.

We run two versions of this experiment.37 First, we assume that the extra uninsurable

risk is normally distributed. This case gives a flatter optimal marginal tax profile than the

baseline, but even in this extreme case without private insurance, the optimal marginal tax

profile remains upward-sloping. Thus our finding of an upward-sloping profile is robust to

any plausible variation in the extent of private insurance, as long as we retain the assumption

that wages follow a Pareto lognormal distribution.38

Second, we introduce a heavy left tail in the wage distribution so that more individuals

have very low (and privately uninsurable) productivity.39 This second case gives a U-shaped

optimal marginal tax profile. This specification implies significant inequality in the bottom

half of the productivity distribution and thus much larger distributional gains from taxing

the moderately poor to increase lump-sum transfers benefiting the very poor (panel D).

However, those larger transfers mean smaller distributional gains from raising rates in

the middle of the wage distribution, which translates to lower marginal tax rates there. Note

37We generalize the baseline EMG distribution for α to a normal-Laplace distribution: α = αN+αE1
−αE2

where αN ∼ N(µ̂α, σ̂
2
α), αE1

∼ Exp(λα) and αE2
∼ Exp(λ̂α). This second exponential component allows for

a heavier than normal left tail in the log productivity distribution. The baseline calibration is nested as σ̂2
α =

σ2
α and λ̂α = ∞. We retain our estimate for the right tail parameter λα = 2.2 and consider two alternative

values for (σ̂2
α, λ̂

−2
α ), where in each case we ensure that the model replicates the total observed empirical

variance for log earnings. In the first, the extra uninsurable risk is normal: σ̂2
α = σ2

α+((1+σ)/σ)2σ2
ε , λ̂α =∞.

In the second, the increase translates into a thicker left exponential tail: σ̂2
α = σ2

α, λ̂
−2
α = ((1 + σ)/σ)2σ2

ε .
38If we eliminate the exponential right tail in the distribution for α, so that α is Normally distributed,

then optimal marginal tax rates decline with productivity over most of the productivity distribution (see
figure A6 in Appendix G.4). However, that finding is of more theoretical interest than practical relevance,
since the heavy Pareto-like right tail in the empirical earnings distribution is a long-recognized feature of
U.S. data, and clearly points to an exponentially distributed component in the right tail of productivity
distribution.

39The percentile ratios of productivity are P5/P1=2.02, P10/P5=1.41, and P25/P10=1.64, compared to
1.46, 1.23, and 1.42 in the baseline economy that we reported in table 1.
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that, as in the experiment in which we increase required expenditure, eliminating insurance

has little impact on optimal marginal rates near the top of the income distribution.40

Comparison to Saez (2001) The previous two experiments help to explain the difference

between the increasing optimal marginal tax schedule under our baseline calibration and the

examples in Saez (2001) that find U-shaped marginal rate schedules. Relative to Saez, we

impose a smaller value for government purchases, and optimal transfers are smaller in our

model, in part because we allow for private insurance.41 In Saez’s calibration reported in

column (3) of his table 2, optimal transfers are 31 percent of GDP, and government purchases

are 25 percent of GDP.42 Thus, the required government tax take is 56 percent of GDP. In

our baseline parameterization, the corresponding number is 41.8 percent (transfers are 21.5

percent of GDP, and purchases are 20.3 percent; see table 2).

If we change our calibration to deliver a similar average tax rate to Saez, we also get a

U-shaped profile for marginal rates. For example, in the two economies that give U-shaped

optimal tax schedules in figure 4 (dashed blue lines), government purchases plus transfers

are 59.9 percent (panel A) and 54.7 percent (panel C) of output.

In 2015, total U.S. government spending including public consumption, gross investment,

transfer payments and interest on debt was 33.5 percent of GDP.43 This total is smaller than

the value in our baseline model and much smaller than the value in Saez’s economy. Such a

modest level of revenue can be raised via an upward-sloping marginal tax schedule—which

is preferable from a distributional standpoint—without generating large efficiency costs.

40Kuziemko et al. (2015) find that educating people about the extent of inequality in the United States
does not significantly change their views about optimal top marginal rates.

41Golosov et al. (2016) and Mankiw et al. (2009) also find U-shaped marginal rates. Both papers abstract
from private insurance. The Golosov et al. (2016) calibration implies that most households have very
low productivity, while Mankiw et al. (2009) assume that 5 percent of households have zero productivity.
Together these assumptions translate into strong fiscal pressure to finance large lump-sum transfers, which
in turn translates into very high and U-shaped marginal rates.

42In this calibration, Saez assumes a utilitarian welfare criterion, a utility function with income effects,
and a compensated elasticity of 0.5.

43National Income and Product Accounts, Table 3.1.
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5.3 Preferences without Income Effects à la Diamond (1998)

In this section, we specialize to the case of preferences that have no income effects:

log

(
c− h1+σ

1 + σ

)
. (19)

This assumption allows us to do two useful things. First, we can compare our quantitative

results directly with the well-known theoretical results in Diamond (1998).44 Second, this

specification simplifies the expressions for efficiency costs, which allows us to develop a partial

theoretical characterization of the comparative statics of distributional gains with respect

to government purchases G, as a complement to the numerical exploration in figure 4. This

analysis will reinforce the point that the shape of the optimal tax schedule is closely tied to

the shape of the distributional gain function.

Given the utility function (19), the efficiency cost of taxation is given by

E(α) =
T ′(α)

1− T ′(α)

1

1 + σ

fα(α)

1− Fα(α)

This expression makes clear that thinking about how the efficiency cost of taxation varies

with productivity is of limited value in understanding the shape of the optimal tax schedule.

First, besides the marginal tax rate itself, efficiency costs vary only because of exogenous

variation in the inverse Mills ratio. We have shown that the level of government purchases G

plays a key role in shaping the optimal tax schedule, but it does not show up in the efficiency

cost expression (neither do Pareto weights W (α)). Second, given our baseline specification

with the EMG distribution for α, the inverse Mills ratio is increasing in α, suggesting a

motive for declining marginal tax rates, while (as we will see) the optimal marginal tax

schedule in our calibrated example is increasing in α.45 Thus, the preference specification

44To facilitate comparison to Diamond (1998), we abstract from insurable risk when considering this
preference specification. Our economy is then identical to the case considered by Diamond when the G(.)
function in his eq. (1) is logarithmic.

45Note that given an exponential distribution for α, the inverse Mills ratio would be constant and equal to
λα. In that case, efficiency costs vary with productivity only because marginal tax rates do. So any slope to
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without income effects clearly illustrates the importance of distributional gains in shaping

the optimal tax schedule.

Given the utility function (19), optimal tax rates must satisfy

∫ ∞
α

{
1− uc(s)

χ

}
dFα(s)︸ ︷︷ ︸

D̃(α)≡[1−Fα(α)]D(α)

=
1

1 + σ

T ′(α)

1− T ′(α)
fα(α)︸ ︷︷ ︸

Ẽ(α)≡[1−Fα(α)]E(α)

for all α, (20)

where χ is the average marginal utility of consumption in the population (see Section 3.3)

and D̃(α) ≡ [1−Fα(α)]D(α) and Ẽ(α) ≡ [1−Fα(α)]E(α) are total distributional gains and

efficiency costs (recall D(α) and E(α) are per dollar of revenue raised). This is equation (9)

in Diamond (1998) when his G function is logarithmic.

Because the marginal utility of consumption uc(α) is decreasing in α under the optimal

policy, there exists a productivity value α∗ such that uc(α
∗) = χ and thus D̃(α) is maximized.

Note that α∗ is endogenous: it depends on the shape of the marginal utility profile, which in

turn depends on the tax system. Let αm denote the mode of the distribution for α. Diamond

(1998) notes that if α∗ < αm under the optimal tax policy, then there must be a range of

values for productivity α ∈ [α∗, αm] in which optimal marginal tax rates are declining. The

logic is simply that the optimality condition can be rearranged as

T ′(α)

1− T ′(α)
= (1 + σ)

D̃(α)

fα(α)
,

and for α ∈ [α∗, αm] , D̃(α) is declining while fα(α) is increasing.

Panel A of figure 5 plots the total distributional gain term D̃(α) under the optimal policy

and the density fα(α) for a parameterization similar to the one described in Section 4.46 Note

that the distributional gain term peaks after fα(α) (i.e., α∗ > αm), so Diamond’s condition

the optimal marginal tax schedule must be entirely driven by distributional concerns. The optimal marginal
tax schedule in such a case is in fact strongly upward sloping (see figure A7 in Appendix G.4).

46Here we assume σ = 2. The distribution for α is EMG with variance σ2
α = 0.218 and tail parameter

λα = 3.03. Government purchases G are such that they would account for 18.8 percent of output under the
tax system estimated in Section 4. Given these choices and under that tax system, the distribution for labor
earnings would be identical to the EMG distribution estimated in Section 4.
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Figure 5: Preferences without Income Effects. Panel A plots distributional gains and the
productivity density (between the 5th and 95th percentiles). The peak of each curve is indi-
cated by a dot. The solid red line is the baseline case. The dotted green line corresponds to
the interim case in which G is higher but marginal tax rates are unchanged. Panel B plots the
optimal marginal tax schedules for the baseline (solid red) and high G (dashed blue) cases.

for the optimal marginal tax schedule to have a downward-sloping portion is not satisfied.

The optimal marginal tax schedule plotted in panel B is in fact everywhere increasing, as in

our baseline calibration (see figure 2).47

Consider now an increase in G from its baseline (low) value that is financed by reducing

lump-sum transfers with an unchanged marginal tax rate schedule.

Proposition 1 Given a utility function of the form (19), a reduction in lump-sum transfers

(i) has no effect on efficiency costs, Ẽ(α), (ii) increases total distributional gains D̃(α) for

all finite α, and (iii) reduces the value α∗ at which D̃(α) is maximized.

Proof. See Appendix F.1.

Result (i) is trivial: lump-sum transfers do not affect labor supply given the preferences in

eq. (19). Result (ii) is intuitive and reflects the fact that with lower lump-sum transfers, there

is more inequality in consumption and in the marginal utility of consumption. The intuition

behind result (iii) is that reducing lump-sum transfers hurts the poor disproportionately,

47In discussing the condition α∗ < αm, Diamond (1998) writes that “[t]his seems like the more interesting
case, assuming that the mode of skills is near the median and the government would like to redistribute
toward a fraction of the labor force well below one-half” (p.87). One might interpret Diamond as arguing
here that the condition will be satisfied if the planner has a strong enough desire to redistribute. In Section
5.4 we show that when the planner has a strong taste for redistribution, the optimal marginal tax schedule
does indeed have a downward-sloping portion.
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in the sense that marginal utility becomes a more convex function of productivity. Thus,

distributional gains increase relatively more at low income levels.

Panel A of figure 5 illustrates Proposition 1 with a numerical example. The dotted

green line plots distributional gains when G is increased but the marginal tax schedule is

unchanged relative to the (initially optimal) baseline.48 Let α∗fixed denote the distributional

gain maximizing value for α in this case.

The shift in the distributional gain function can be used to interpret the change in the

optimal tax schedule plotted in panel B. First, combining results (i) and (ii), it cannot be

optimal to finance an increase in G solely by reducing lump-sum transfers: distributional

gains (dotted green line) would then exceed efficiency costs (solid red line) at all productivity

levels. This explains why optimal marginal tax rates increase across the distribution. Second,

thanks to result (iii), increasing G shifts the argmax of the D̃(α) function to the left, holding

marginal rates fixed; α∗fixed < α∗. In fact, in this example, the argmax shifts from above

the mode for productivity to below the mode; α∗fixed < αm < α∗. This change in the shape

of the D̃(α) function implies that the welfare gains from raising marginal tax rates (i.e.,

D(α) − E(α)) are larger below αm than above αm, which in turn accounts for why the

planner raises marginal tax rates by more below αm than above αm. This explains why the

new optimal tax schedule is flatter (panel B).49

5.4 Alternative Social Preferences

To this point, we have explored optimal policy assuming the planner is utilitarian (θ = 0),

the most common assumption in the literature. We now consider alternative Pareto weight

functions. The one-parameter specification considered in eq. (18) nests several classic social

preference specifications. The case θ = −1 corresponds to a laissez-faire planner, with

planner weights inversely proportional to equilibrium marginal utility absent redistributive

48This higher value is 40 percent of output under the baseline HSV tax system.
49Let α∗G+ denote the corresponding distribution-gain-maximizing value for α. In this example, it turns

out that α∗G+ < αm. Thus, Diamond’s condition for the optimal marginal tax schedule to have a downward-
sloping portion is now satisfied, which accounts for the U-shape of the optimal profile in panel B.
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taxation.50 The case θ →∞ corresponds to the maximal desire for redistribution. We label

this the Rawlsian case because in our environment, a planner with this objective function

will seek to maximize the minimum level of welfare in the economy.51

Empirically Motivated Pareto Weight Function We are especially interested in the

value for θ that rationalizes the extent of redistribution embedded in the actual U.S. tax

and transfer system. Consider a Ramsey problem of the form (14) where the planner uses

a Pareto weight function of the form (18) and is restricted to choosing a tax-transfer policy

within the HSV class. The planner has to respect the government budget constraint and

therefore effectively has a single choice variable, τ . Let τ̂(θ) denote the welfare-maximizing

choice for τ given a Pareto weight function indexed by θ, and let τUS denote the estimated

degree of progressivity for the actual U.S. tax and transfer system. We define an empirically

motivated Pareto weight function W (α; θUS) as the special case of the function defined in eq.

(18) in which the taste for redistribution θUS satisfies τ̂(θUS) = τUS.52

The Pareto weight function W (α; θUS) is appealing for two related reasons. First, it

offers a positive theory of the observed tax system: given θUS a Ramsey planner restricted to

the HSV functional form would choose exactly the observed degree of tax progressivity τUS.

Second, given θ = θUS, any tax system that delivers higher welfare than the HSV function

with τ = τUS must do so by redistributing in a cleverer way; by virtue of how θUS is defined,

simply increasing or reducing τ within the HSV class cannot be welfare improving. In this

sense, the case θ = θUS isolates the efficiency gains from replacing the HSV parametric

function with the optimal non-parametric schedule.

50A government with this objective function and the ability to apply α-specific lump-sum taxes would
choose consumption proportional to productivity, c(α) ∝ exp(α), and hours worked independent of α.

51With elastic labor supply and unobservable shocks, the rankings of productivity and welfare will always
be aligned. So, maximizing minimum welfare is equivalent to maximizing welfare for the least productive
household.

52This approach to estimating a Pareto weight function can be generalized to apply to alternative tax
function specifications. In particular, for any representation of the actual tax and transfer scheme T, one
can always compute the value for θ that maximizes the social welfare associated with W (α; θ), given the
equilibrium allocations corresponding to T .
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A Closed-Form Link between Tax Progressivity and Taste for Redistribution A

closed-form expression for social welfare can be derived in our economy. The first-order

condition with respect to τ then offers a closed-form mapping between τ and θ.

Proposition 2 The social preference parameter θUS consistent with the observed choice for

progressivity τUS is a solution to the following quadratic equation:

σ2
αθ

US− 1

λα + θUS
= −σ2

α(1− τUS)− 1

λα − 1 + τUS
+

1

1 + σ

[
1

(1− gUS) (1− τUS)
− 1

]
, (21)

where gUS is the observed ratio of government purchases to output.53

Proof. See Appendix F.2.

Equation (21) is novel and useful. Given observed choices for gUS and τUS, and estimates

for the uninsurable productivity distribution parameters σ2
α and λα and for the labor elas-

ticity parameter σ, we can immediately infer θUS.54 Given our baseline parameter values

and gUS = 0.188, the implied empirically motivated taste for redistribution is θUS = −0.517.

Thus, the fact that the current U.S. tax and transfer system is only modestly redistributive

points to a weaker than utilitarian taste for redistribution.

Our finding of a negative θ may be interpreted in two ways. One is that the U.S. political

system appropriately aggregates Americans’ preferences, so we should use these weights to

evaluate social welfare. Consistent with this idea, Weinzierl (2017) reports survey support

for the idea that there should be a link between taxes paid and government benefits received,

and that respondents who emphasize that principle are not enthusiastic about using the tax

system to reduce inequality. An alternative interpretation is that the political system has

been captured by the elites and that a utilitarian (or Rawlsian) objective would better reflect

the preferences of “average” Americans. Gilens and Page (2014) find that the preferences

of affluent citizens have a much greater impact on policy outcomes than the preferences of

53The relevant root of this quadratic equation can be deduced by comparison with the special case in
which λα →∞, in which case one can explicitly solve for θUS in closed form.

54For the purpose of inferring θUS, we can treat gUS as exogenous.
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Figure 6: Optimal taxes and the HSV approximation with θ = θUS. The figure contrasts
tax rates under the current HSV tax system to those under the Mirrlees policy using our
empirically motivated Pareto weight function.

those in the middle of the income distribution. The probabilistic voting model (see Persson

and Tabellini 2000) is one model that can account for this pattern.55

Figure 6 plots the marginal and average tax schedules for the optimal Mirrleesian policy

given θ = θUS against the schedules under our HSV approximation to the current tax system.

The key message from panel A is that the optimal marginal tax schedule is increasing under

the empirically-motivated Pareto weight function, as it is for the utilitarian case considered

previously. The welfare gain of switching from the current HSV tax schedule to the optimal

policy is tiny at 0.05 percent of consumption, indicating that the current tax system is close

to efficient. The gain is so small because the current HSV tax schedule is very similar to

that chosen by the Mirrleesian planner, especially in the shaded area where 90 percent of

households are located.

Optimal Taxation under Alternative Social Preferences Panel A of figure 7 plots

optimal Mirrleesian marginal tax rate profiles for θ ∈
{
−1, θUS, 0, 1,∞

}
.56 Panel B plots the

55Here, two candidates for political office (who care only about getting elected) offer platforms that appeal
to voters with different preferences over tax policy and over some orthogonal characteristic of the candidates.
If the amount of preference dispersion over this orthogonal characteristic is systematically declining in labor
productivity, then by tilting their tax platforms in a less progressive direction, candidates can expect to
attract more marginal voters than they lose. Thus, in equilibrium, both candidates offer tax policies that
maximize social welfare under a Pareto weight function that puts more weight on more productive (and more
tax-sensitive) households.

56When we compute the Rawlsian case, we simply maximize welfare for the lowest α type in the economy,
subject to the usual feasibility and incentive constraints. A numerical value for θ is not required for this
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Figure 7: Alternative Social Preferences. Panel A plots optimal marginal tax schedules cor-
responding to Pareto weight functions with the following values for the taste for redistribution
parameter: θ = −1 (laissez-faire), θ = −0.517 (empirically motivated), θ = 0 (utilitarian),
θ = 1 (more redistributive), and θ =∞ (Rawlsian). Panel B plots distributional gain functions
for the same set of values for θ, each relative to the baseline utilitarian objective (θ = 0).

corresponding distributional gain functions, in each case relative to the utilitarian baseline.

Considering Pareto weight functions with a stronger than utilitarian taste for redistri-

bution, the optimal marginal tax schedule shifts upward. In addition, the shape of optimal

schedule changes from upward sloping to U-shaped and eventually, under the Rawlsian ob-

jective, to downward sloping. These changes are qualitatively similar to those in the earlier

experiments in which we confronted a utilitarian planner with larger expenditure require-

ments or with more uninsurable productivity dispersion. The reason is that a stronger taste

for redistribution implies larger distributional gains from raising marginal tax rates at low

income levels (panel B). Thus, the planner is willing to tolerate the larger efficiency costs as-

sociated with higher marginal tax rates in order to increase lump-sum transfers that benefit

the very poorest.57

Note that in the laissez-faire case (θ = −1), the optimal marginal tax schedule is quite

different, with low and generally declining marginal rates. In this case, the planner does not

program.
57Welfare gains from tax reform here are very large, reaching 662 percent of consumption in the Rawlsian

case (see Appendix G.5). They are so large because the least productive households rely almost entirely on
transfers for consumption, and the Rawlsian planner therefore essentially maximizes transfers. Transfers in
this case are $32,574.
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perceive large distributional gains from downward redistribution, and focusses instead on

efficiency. From an efficiency standpoint, a generally declining marginal tax rate is desirable

because it implies a low average marginal rate (8.2 percent).

5.5 Summary of Findings

We take away several related messages from this analysis. First and foremost, for a range of

plausible alternative model calibrations to the United States, the optimal tax and transfer

system features marginal tax rates that are increasing in income.

Second, and related, the optimal policy is similar in spirit to a Universal Basic Income

(UBI) system.58 In particular, the optimal system features generous transfers, and these

transfers are universal in that they are not quickly phased out or taxed away as household

earned income rises. In contrast, in his exploration of optimal tax and transfer policy, Saez

(2001) reports that “as in actual systems, the simulations suggest that the government should

apply high rates at the bottom in order to target welfare only to low incomes” (p.223). Thus,

one way to frame the distinction between our increasing optimal marginal rate schedule and

Saez’ U-shaped one is that transfers under our scheme have the flavor of UBI, while transfers

in his have the flavor of means-tested benefits.

Third, the shape of the optimal schedule depends heavily on how much fiscal pressure

the government faces. Reducing fiscal pressure on the government (e.g., by reducing G) both

increases lump-sum transfers and reduces marginal tax rates on low incomes. Conversely, if

an optimizing government needs to increase net tax revenue (e.g., to finance a war), it should

do so primarily by raising marginal tax rates at the bottom of the productivity distribution

rather than at the top.59

58That in turn is a repackaging of the Negative Income Tax proposal in Friedman and Friedman (1962).
59In contrast, the “equal sacrifice” principle (see, e.g., Scheve and Stasavage 2016) would dictate increasing

tax progressivity during wartime, based on the idea that the rich should sacrifice more through taxes if the
poor are asked to do the actual fighting.
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Table 3: Mirrlees versus Ramsey Taxation

System Parameters Outcomes

T ′ (%) Tr ($) Tr
Y

(%) Tr+G
Y

ω (%) ∆Y (%)

HSVUS λ : 0.840 τ : 0.181 33.5 1, 753 2.3 21.1 — —

HSV λ : 0.817 τ : 0.331 46.6 4, 632 6.4 26.5 1.65 −6.53

Affine τ0 : $− 20, 747 τ1 : 49.2% 47.7 20, 111 28.1 48.3 1.36 −7.31

Mirrlees 49.1 15, 400 21.5 41.8 2.07 −7.32

Note: See the notes to table 2.

6 Further Explorations

We extend our exploration in two different directions. First, we compare optimal non-

parametric “Mirrleesian” policies to the best that can be achieved when the tax and transfer

scheduled is restricted to simple functional forms. Next, we explore optimal tax reform when

the planner faces the additional constraint that no households can be left worse off relative

to the current tax system.

6.1 Mirrlees versus Ramsey Taxation

We compute the best tax and transfer systems in two parametric classes: (i) the HSV class

and (ii) the affine class. Assuming a utilitarian objective, we compare allocations and welfare

in each of those cases with their counterparts under the fully optimal Mirrleesian policy and

under our baseline HSV approximation to the current U.S. tax and transfer system.

Table 3 presents outcomes for each tax function. Moving from the baseline policy HSVUS

to the optimal Mirrleesian one, as noted previously, translates into a much more redistributive

tax system, with a higher average marginal tax rate and larger lump-sum net transfers. This

comes at the cost of a 7.3 percent decline in output relative to the baseline. However, the

additional redistribution translates into an overall welfare gain of 2.07 percent.

When we restrict the new fiscal policy to the parametric HSV class, we find an increase

from 0.181 to 0.331 in the progressivity parameter τ . This reform generates a welfare gain
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Figure 8: Mirrlees versus Ramsey Taxation. The figure contrasts allocations under the HSV
tax system, the affine system, and the Mirrlees system. Panels A and B plot marginal and
average tax schedules, and panels C and D plot decision rules for consumption and hours
worked.

equivalent to giving all households 1.65 percent more consumption, which is 80 percent of

the gain under the best-possible Mirrleesian policy. The best policy in the affine class does

less well, delivering only 66 percent of the welfare gains from the optimal Mirrlees reform.

This indicates that for welfare, it is more important that marginal tax rates increase with

income—which the HSV functional form accommodates but which the affine scheme rules

out—than that the government provides universal lump-sum transfers—which only the affine

scheme admits.

Figure 8 plots marginal and average tax schedules (panels A and B) and decision rules

for consumption and hours (panels C and D) for each best-in-class tax and transfer scheme.

Over most of the shaded area, covering 90 percent of the population, allocations under the
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HSV policy are very similar to those in the constrained efficient Mirrlees case. Allocations

are similar because the HSV marginal and average tax schedules are broadly similar to those

under the optimal policy. As we have already emphasized, the profile for marginal tax rates

that decentralizes the constrained efficient allocation is increasing in productivity, and the

optimal HSV schedule mirrors this. Because marginal rates are too high at the top under

the HSV scheme, very productive households work too little. At the same time, because

transfers are too small, very unproductive households work too much. However, the mass of

households in these tails is small.

Panel A of figure 8 offers a straightforward visualization of why an affine tax schedule

is welfare inferior to the HSV form. Because any affine tax function features a constant

marginal rate, an affine scheme cannot replicate the increasing optimal marginal tax schedule.

Under the best affine scheme, low-wage households face marginal rates that are too high and

work too little relative to the constrained efficient allocation. At the same time, because

marginal tax rates are too low at high income levels, high-productivity households consume

too much.60

6.2 Pareto-Improving Tax Reforms

Exploring Pareto-improving tax reforms is of interest for two reasons. First, one would expect

Pareto-improving reforms to be easier to implement in practice compared with reforms that

create winners and losers. Second, as figure 7 illustrates, the welfare-maximizing policy

under the traditional Mirrlees approach is highly sensitive to the taste for redistribution

embedded in the planner’s objective function, and people might disagree about how much

emphasis the planner should put on reducing inequality. Insisting that any tax reform be

Pareto improving makes the choice of planner weights less critical.

To characterize Pareto-improving reforms, we adapt the Mirrlees problem (10) by adding

a set of additional constraints of the form U(α, α) ≥ UUS(α) for all α ∈ A, where UUS(α)

60Note that an affine tax scheme might be appealing for reasons that our theoretical framework does not
capture, such as being easy to communicate and administer.
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Figure 9: Pareto-improving Tax Reforms. The figure plots marginal tax schedule and welfare
gains (CEV) (panels A and B) and decision rules for consumption and hours worked (panels C
and D) under the Mirrlees system, the approximation to the current system, and the system
that is optimal subject to being weakly Pareto improving.

denotes expected utility for a household of type α under our HSV approximation to the

current U.S. tax and transfer system.61

Figure 9 plots tax rates and decision rules under three different tax systems: the optimal

Mirrlees scheme, our approximation to the current system, and the scheme that is optimal

subject to also being weakly Pareto improving. For both the Mirrlees and Pareto improving

cases, we assume the planner has a utilitarian objective.

Because the Mirrleesian planner chooses a more redistributive tax scheme than the current

system (panel A), relatively productive households are worse off, and thus the Mirrlees reform

is not Pareto improving (panel B). In fact, Mirrleesian tax reform leaves 44.5 percent of

households worse off.

61Adding these Pareto-improving constraints is challenging computationally because the pattern of which
subset of constraints is binding at the optimum is unknown ex ante. We describe our computational approach
in Appendix D.2.
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Consider now the optimal Pareto-improving reform. The Pareto-improving constraints

bind for households in the middle of the productivity distribution. In this region, where the

majority of households are located, allocations and tax rates are identical to those under the

current tax system. We formalize this result in the following proposition.

Proposition 3 Let TUS be the current tax system, and let TPI be the optimal Pareto-

improving system. If the Pareto-improving constraints bind in an open interval Γ ⊂ A,

i.e., U(α;TUS) = U(α;TPI) for all α ∈ Γ, and if TUS and TPI are differentiable on Γ, then

allocations and tax rates under TPI are identical to those under TUS for all α ∈ Γ.

Proof. See Appendix F.3.

The Pareto-improving reform leaves most households indifferent relative to the baseline

tax system. However, households in both tails of the productivity distribution are strictly

better off. In the right tail, marginal tax rates are lower than under the baseline HSV tax

system and decline to zero at the upper bound for productivity, an established property of

any Pareto-efficient system. These lower tax rates leave the very rich better off and also

increase revenue that can be redistributed to the poor. In the left tail of the productivity

distribution, marginal tax rates under the Pareto-improving reform are higher than under

the HSV system and are everywhere strictly positive. Again, this change generates additional

tax revenue that can be used to increase lump-sum transfers.

However, the welfare gains from Pareto-improving tax reform turn out to be small. The

Pareto-improving reform generates a gain equivalent to giving all households 0.41 percent

more consumption, compared to a 2.07 percent gain in the same economy when the planner

is not required to leave all households weakly better off.

Note that insisting that tax reforms be Pareto improving and endowing the planner with

a weak taste for redistribution (Section 5.4) are two different ways to reduce the welfare

gains from making the tax system more redistributive. In both cases, we find small welfare

gains from tax reform and optimal systems that resemble the current one. We conclude that

the majority of the welfare gains in the utilitarian baseline Mirrlees experiment reflect gains
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from redistributing the tax burden toward higher-income households rather than gains from

making the system more efficient.

7 Conclusions

We revisited the classic question of the optimal shape of the income tax schedule, in an

economy calibrated to match the shape of the earnings distribution in the United States,

and the extent of private insurance. We highlight five findings from our analysis.

First, a utilitarian planner would choose a system in which marginal tax rates increase in

income and which delivers generous transfers. Low marginal rates at low income levels mean

that these transfers are more akin to universal basic income than to means-tested benefits.

The increasing optimal profile for marginal rates is robust to plausible alternative values for

preference parameters.

Second, for interpreting the shape of the optimal tax schedule, it is useful to consider how

much pressure the planner faces to raise revenue. When fiscal pressure is low, the optimal

marginal tax schedule will be an upward-sloping function of income. As fiscal pressure is

progressively increased, the optimal schedule becomes first flatter, then U-shaped in income,

and ultimately downward sloping.

Third, the specification of the planner’s objective function has an enormous impact on

policy prescriptions. We have proposed a functional form for Pareto weights indexed by a

single taste for redistribution parameter and have argued that a natural baseline for this

parameter is the value that rationalizes the progressivity embedded in the current tax and

transfer system.

Fourth, the optimal profile for marginal tax rates may be well approximated by the simple

two-parameter power function used by Benabou (2000) and Heathcote et al. (2017).

Fifth, Pareto-improving tax reforms may imply that most households face no changes in

average or marginal tax rates.

Our model environment could be enriched along several dimensions. First, labor supply is
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the only decision margin distorted by taxes. Although this has been the focus of the optimal

tax literature, skill investment and entrepreneurial activity are additional margins that are

likely sensitive to the tax system. Second, our model features no uninsurable life-cycle shocks

to productivity: modeling such shocks would allow the Mirrlees planner to increase welfare

by making taxes history dependent. The associated welfare gains may be modest, however,

given that privately uninsurable life-cycle shocks are small relative to permanent productivity

differences.
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A Alternative Specification

A.1 Insurance via Family versus Insurance via Financial Markets

We show that, with one caveat, all the analysis of the paper remains unchanged if we consider

an alternative model of insurance against ε shocks. In particular, we put aside the model

of the family and suppose instead that each agent is autonomous, buys private insurance in

decentralized financial markets against ε shocks, and is taxed at the individual level.

Decentralized Economy Suppose agents first observe their idiosyncratic uninsurable

component α and then trade in insurance markets to purchase private insurance at ac-

tuarially fair prices against ε. The budget constraint for an agent with α is now given by∫
B(α, ε)Q(ε)dε = 0, (A1)

where B(α, ε) denotes the quantity (positive or negative) of insurance claims purchased that

pay a unit of consumption if and only if the draw for the insurable shock is ε ∈ E and

where Q(E) is the price of a bundle of claims that pay one unit of consumption if and only

if ε ∈ E ⊂ E for any Borel set E in E . In equilibrium, these insurance prices must be

actuarially fair, which implies Q(E) =
∫
E
dF (ε).

In this decentralization, taxation occurs at the individual level and applies to earnings

plus insurance payments. Thus, the individual’s budget constraints are

c(α, ε) = y(α, ε)− T (y(α, ε)) for all ε, (A2)

where individual income before taxes and transfers is given by

y(α, ε) = exp(α + ε)h(α, ε) +B(α, ε) for all ε. (A3)

The individual agent’s problem is then to choose c(α, ·), h(α, ·), and B(α, ·) to maximize

expected utility (4) subject to eqs. (A1), (A2), and (A3). The equilibrium definition in this

case is similar to that for the specification in which insurance takes place within the family.

It is straightforward to establish that the FOCs for this problem are exactly the same as

those for the family model of insurance with taxation at the individual level. Thus, given

the same tax function T, allocations with the two models of insurance are the same. Part

of the reason for this result is that each family is small relative to the entire economy and

takes the tax function as parametric. Moreover, taxes on income after private insurance /

family transfers do not crowd out risk sharing with respect to ε shocks.
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Planner’s Problem Now consider the Mirrlees planner’s problem in the environment with

decentralized insurance against ε shocks. We first establish that if the planner is restricted

to only ask agents to report α, the solution is the same as the one described previously for

the family model. We then speculate about what might change if the planner can also ask

agents to report ε.

Suppose that the planner asks individuals to report α before they draw ε. Then, given

their true type α and a report α̃ and associated contract (c(α̃), y(α̃)), agents shop for insur-

ance. Consider the agent’s problem at this stage:

max
{h(α,α̃,ε),B(α,α̃,ε)}

∫ {
c(α̃)1−γ

1− γ
− h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε),

subject to ∫
B(α, α̃, ε)Q(ε)dε = 0,

exp(α + ε)h(α, α̃, ε) +B(α, α̃, ε) = y(α̃).

Substituting the second constraint into the first, and assuming actuarially fair insurance

prices, we have ∫
[y(α̃)− exp(α + ε)h(α, α̃, ε)] dFε(ε) = 0.

The first-order condition for hours is

h(α, α̃, ε)σ = µ(α, α̃) exp(α + ε),

where the budget constraint can be used to solve out for the multiplier µ(α, α̃) :

h(α, α̃, ε) =
y(α̃)

exp(α)

exp(ε)
1
σ∫

exp(ε)
1+σ
σ dFε(ε)

.

Now note that this expression is exactly the same as the one for the family planner

decentralization (the first-order condition with respect to hours from problem (8)). Moreover,

in both cases c(α, ε) = c(α̃). It follows that for any values for (α, α̃), expected utility for

the agent in this decentralization with private insurance markets is identical to welfare for

the family head in the decentralization with insurance within the family. Thus, the set of

allocations that are incentive compatible when the social planner interacts with the family

head are the same as those that are incentive compatible when the planner interacts agent

by agent. It follows that the solution to the social planner’s problem is the same under both

models of ε insurance. Similarly, the income tax schedule that decentralizes the Mirrlees

solution is also the same under both models of ε insurance, and marginal tax rates are given
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in both cases by eq. (13). Note that marginal tax rates do not vary with ε under either

insurance model because income (including insurance payouts/family transfers) does not

vary with ε.1

Finally, note that if insurance against ε is achieved via decentralized financial markets,

the planner could conceivably ask agents to report ε after the ε shock is drawn and offer

allocations for consumption c(α̃, ε̃) and income y(α̃, ε̃) indexed to reports of both α and ε.

With decentralized insurance, the planner might be able to offer contracts that separate

agents with different values for ε (recall that under the family model for insurance, this was

not possible). One might think there would be no possible welfare gain to doing so, since

private insurance already appears to deliver an efficient allocation of hours and consumption

within any group of agents sharing the same α. However, it is possible that by inducing

agents to sacrifice perfect insurance with respect to ε, the planner can potentially loosen

incentive constraints and thereby provide better insurance with respect to α.2 We plan to

explore this issue in future work. For now, we simply focus on the problem in which the

planner offers contracts contingent only on α, which is the natural benchmark under our

baseline interpretation that the family is the source of insurance against shocks to ε.

A.2 Dynamic Model with Life-Cycle Shocks

Consider the following overlapping-generations economy. Individuals live for two periods,

t = 1 and t = 2. There is no discounting (β = 1) and individuals can borrow and lend freely

at a gross interest rate R = 1. We assume log utility for consumption as in our quantitative

section.

At labor market entry, individuals draw a “permanent wage” α ∼ Fα. Wages grow over

the life cycle at gross rate ρ. The wage at age t is

wt(α, εt) =
2ρt−1

1 + ρ
exp(α) exp(εt),

where εt denotes an i.i.d. insurable shock, drawn from Fε anew at each age. The average

wage (averaging by t, by α, and by ε) is equal to one, by construction.

1It is clear that the Mirrlees solution could equivalently be decentralized using consumption taxes. In
that case we would get

1 + T ′(c∗(α)) =
c∗(α)−γ exp(α)1+σ

(∫
exp(ε)

1+σ
σ dFε(ε)

)σ
y∗(α)σ

.

2When we introduce publicly observable (but privately uninsurable) differences in productivity, we see
that constrained efficient allocations typically have the property that agents with the same unobservable
component α but different observable components of productivity κ are allocated different consumption (see
Section G.6).
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The individual’s log wage is

logwt(α, εt) = log

(
2ρt−1

1 + ρ

)
+ α + εt,

and thus cross-sectional dispersion in wages has three uncorrelated components related to

age t, permanent income α, and insurable shocks ε.

We assume a progressive tax on consumption, so that c units of consumption requires(
c
λ

) 1
1−τ units of income.3

Absent borrowing constraints, the individual problem can be written with a single life-

time budget constraint. In particular, an individual with given values for α and ρ chooses

{c1(α, ε1), c2(α, ε1, ε2).h1(α, ε1), h2(α, ε1, ε2)} to solve

max

∫∫ {
log c1(α, ε1)− h1(α, ε1)1+σ

1 + σ
+ log c2(α, ε1, ε2)− h2(α, ε1, ε2)1+σ

1 + σ

}
dFε(ε1)dFε(ε2)

subject to∫
Q(ε1)λ

−1
1−τ c1(α, ε1)

1
1−τ dε1 +

∫∫
Q(ε1, ε2)λ

−1
1−τ c2(α, ε1, ε2)

1
1−τ dε1dε2

≤
∫
Q(ε1)

2

1 + ρ
exp(α) exp(ε1)h1(α, ε1)dε+

∫∫
Q(ε1, ε2)

2ρ

1 + ρ
exp(α) exp(ε2)h2(α, ε1, ε2)dε1dε2,

where Q(ε1) and Q(ε1, ε2) are the prices of insurance contracts that deliver consumption in

the corresponding idiosyncratic states. In equilibrium, these prices must be actuarially fair,

implying, for example, Q(E) =
∫
E
dFε(ε) for any Borel set E in E .

Let ζ denote the multiplier on the budget constraint. Given fairly priced insurance, the

FOCs for consumption choices are

1

c1(α, ε1)
= ζλ

−1
1−τ

1

1− τ
c1(α, ε1)

1
1−τ−1,

1

c2(α, ε1, ε2)
= ζλ

−1
1−τ

1

1− τ
c2(α, ε1, ε2)

1
1−τ−1.

which immediately imply

c1(α, ε1) = c2(α, ε1, ε2) = c(α),

ζ = (1− τ)λ
1

1−τ c(α)
−1
1−τ .

3This tax system can equivalently be described as an HSV-style progressive tax on income where savings
are tax deductible (see Heathcote et al. 2019).
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The FOCs for hours are

h1(α, ε1) =
[
(1− τ)λ

1
1−τ c(α)

−1
1−τ

] 1
σ

(
2

1 + ρ

) 1
σ

exp

(
1

σ
α

)
exp

(
1

σ
ε1

)
,

h2(α, ε1, ε2) =
[
(1− τ)λ

1
1−τ c(α)

−1
1−τ

] 1
σ

(
2ρ

1 + ρ

) 1
σ

exp

(
1

σ
α

)
exp

(
1

σ
ε2

)
.

Finally, we can solve for c(α) from the budget constraint:

2λ
−1
1−τ c(α)

1
1−τ =

[
(1− τ)λ

1
1−τ c(α)

−1
1−τ

] 1
σ

exp(α)
1+σ
σ

(
2

1 + ρ

) 1+σ
σ {

E
[
exp(ε1)

1+σ
σ

]
+ ρ

1+σ
σ E

[
exp(ε2)

1+σ
σ

]}
.

⇒ c(α) = λ (1− τ)
1−τ
1+σ X

σ(1−τ)
1+σ exp(α)1−τ ,

where X = E
[
exp(ε)

1+σ
σ

] 1

2

2∑
t=1

(
2ρt−1

1 + ρ

) 1+σ
σ

.

Substituting the expression for c(α) into the decision rules for hours gives

h1(α, ε1) = h1(ε1)

= (1− τ)
1
σ λ

1
σ(1−τ)

[
λ (1− τ)

1−τ
1+σ X

σ(1−τ)
1+σ

] −1
σ(1−τ)

(
2

1 + ρ

) 1
σ

exp

(
1

σ
ε1

)
= (1− τ)

1
1+σ X

−1
1+σ

(
2

1 + ρ

) 1
σ

exp

(
1

σ
ε1

)
,

h2(α, ε2) = h2(ε2)

= (1− τ)
1

1+σ X
−1
1+σ

(
2ρ

1 + ρ

) 1
σ

exp

(
1

σ
ε2

)
.

Earnings are given by

yt(α, εt) =
2ρt−1

1 + ρ
exp(α) exp(εt) (1− τ)

1
1+σ X

−1
1+σ

(
2ρt−1

1 + ρ

) 1
σ

exp

(
1

σ
εt

)
= (1− τ)

1
1+σ X

−1
1+σ exp(α)

(
2ρt−1

1 + ρ

) 1+σ
σ

exp

(
1 + σ

σ
εt

)
.

Substituting the expressions for c(α), h1(α, ε1) and h2 (α, ε2) into the expression for
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expected lifetime utility, conditional on α, gives

U(α) = 2 log
(
λ (1− τ)

1−τ
1+σ X

σ(1−τ)
1+σ exp(α)1−τ

)
−(1− τ)X−1

1 + σ

{(
2

1 + ρ

) 1+σ
σ

E
[
exp

(
1 + σ

σ
ε1

)]
+

(
2ρ

1 + ρ

) 1+σ
σ

E
[
exp

(
1 + σ

σ
ε2

)]}

= 2 log
(
λ (1− τ)

1−τ
1+σ X

σ(1−τ)
1+σ exp(α)1−τ

)
− 2

(
1− τ
1 + σ

)
.

Equivalence to Static Model We now compare these allocations to those from the static

model studied in the paper. Let tildes index policy parameters and idiosyncratic shocks in

the static model. In the static model we have4

w(α̃, ε̃) = exp(α̃) exp(ε̃),

c(α̃) = λ̃ (1− τ̃)
1−τ̃
1+σ

{
E
[
exp(ε̃)

1+σ
σ

]}σ(1−τ̃)
1+σ

exp(α̃)1−τ̃ ,

h(ε̃) = (1− τ̃)
1

1+σ

{
E
[
exp(ε̃)

1+σ
σ

]} −1
1+σ

exp

(
1

σ
ε̃

)
,

y(α̃, ε̃) = (1− τ̃)
1

1+σ

{
E
[
exp(ε̃)

1+σ
σ

]} −1
1+σ

exp(α̃) exp

(
1 + σ

σ
ε̃

)
,

and expected utility, conditional on α̃, is therefore

U(α̃) = log

(
λ̃ (1− τ̃)

1−τ̃
1+σ

{
E
[
exp(ε̃)

1+σ
σ

]}σ(1−τ̃)
1+σ

exp(α̃)1−τ̃

)
−
(

1− τ̃
1 + σ

)
.

Comparing expressions across the two economies, it is immediate that allocations and

welfare are identical in the life-cycle and static economies as long as:

(i) λ̃ = λ and τ̃ = τ,

(ii) α̃ = α, and

(iii) ε̃ = log
(

2ρt−1

1+ρ

)
+ ε,

where t and ε are independent random variables such that t ∈ {1, 2} with equal probability,

and ε ∼ Fε. In particular, given these distributional assumptions,

E
[
exp(ε̃)

1+σ
σ

]
= E

[(
2ρt−1

1 + ρ

) 1+σ
σ

exp(ε)
1+σ
σ

]
= E

[
exp(ε)

1+σ
σ

] 1

2

2∑
t=1

(
2ρ(t−1)

1 + ρ

) 1+σ
σ

= X.

Extensions This life-cycle model could be extended in various ways. First, increasing

the number of periods from two to any number N is trivial. Second, it is also immediate

4See, for example, Appendix A in Heathcote et al. (2014).
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that one can introduce heterogeneity in expected wage growth over the life-cycle. For ex-

ample, nothing would change if the age profile for some people was
{

2ρ
1+ρ

, 2
1+ρ

}
rather than{

2
1+ρ

, 2ρ
1+ρ

}
. Third, if we alternatively ruled out inter-temporal borrowing and lending, then

the predictable age component of wages would effectively become uninsurable. The life-cycle

and static models would still be isomorphic, however.

A.3 Individual- versus Family-Level Taxation

Our baseline model specification assumes that the planner only observes—and thus can only

tax—total family income. However, taxing income at the individual level would have no

impact on allocations. We now prove that if the tax function for individual income satisfies

condition (7), then equilibrium consumption and income are independent of ε, as in the

version when taxes apply to total family income.

Proposition 4 If the tax schedule satisfies condition (7), then the solution to the family

head’s problem is the same irrespective of whether taxes apply at the family level or the

individual level.

Proof. We will show that given condition (7), the FOCs for the family head with individual-

level taxation are identical to those with family-level taxation, namely, eqs. (5) and (6).

If income is taxed at the individual level, the family head’s problem becomes

max
{h(α,ε),y(α,ε)}

∫ {
[y(α, ε)− T (y(α, ε))]1−γ

1− γ
− h(α, ε)1+σ

1 + σ

}
dFε(ε)

subject to ∫
y(α, ε)dFε(ε) =

∫
exp(α + ε)h(α, ε)dFε(ε),

where y(α, ε) denotes pre-tax income allocated to an individual of type ε.

The FOCs are

[y(α, ε)− T (y(α, ε))]−γ [1− T ′ (y(α, ε))] = µ(α), (A4)

h(α, ε)σ = µ(α) exp(α + ε), (A5)

where µ(α) is the multiplier on the family budget constraint.

If the tax schedule satisfies condition (7) (the condition that guarantees first-order condi-

tions are sufficient for optimality) then we can show that optimal consumption and income

are independent of ε, as in the version when taxes apply to total family income.

In particular, differentiate both sides of FOC (A4) with respect to ε. The right-hand side

is independent of the insurable shock ε, and hence its derivative with respect to ε is zero.
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The derivative of the left-hand side of this equation with respect to ε is, by the chain rule,

∂

∂ε

{
[y(α, ε)− T (y(α, ε))]−γ [1− T ′(y(α, ε))]

}
=

{
−γ (y − T (y))−1 [1− T ′(y)]

2 − T ′′(y)
}

(y − T (y))−γ
∂y(α, ε)

∂ε
.

The first term is nonzero by condition (7), which immediately implies that ∂y
∂ε

= 0. Therefore,

pre-tax income is independent of ε, and hence consumption is also independent of ε. Thus,

the FOCs (A4) and (A5) combine to deliver exactly the original intratemporal FOC with

family-level taxation, namely, eq. (6). Q.E .D.

B Decomposition of Welfare Effects of A Tax Reform

B.1 Distributional Gain and Efficiency Cost

Derivation of Efficiency Cost In Section 3.3, we define the efficiency cost of increasing

the marginal tax rate at income level ŷ as

E(ŷ) = 1− ∆Tr(ŷ)

1− Fy(ŷ)
,

where ∆Tr(ŷ) denotes the extra transfers that can be funded by this tax reform in equilib-

rium.

To solve for ∆Tr(ŷ) we need to work through how increasing the marginal tax rate at

income level ŷ changes behavior due to two effects. First, it induces households at income

level ŷ to work less, due to a substitution effect, resulting in a loss of revenue, S(ŷ) < 0.

Saez (2001) considers the virtual density f ∗y (ŷ) which is the density of incomes that would

take place at ŷ if the tax function T (·) were replaced by the linear tax schedule tangent to

T (·) at level ŷ. Using this convenient notion, he then obtains the substitution effect as

S(ŷ) = −ec(ŷ)
ŷT ′(ŷ)

1− T ′(ŷ)
f ∗y (ŷ),

where ec(ŷ) > 0 is the compensated (Hicksian) labor supply elasticity. Using his equation

(13), this can be written using the actual density as

S(ŷ) = −ec(ŷ)
ŷT ′(ŷ)

1− T ′(ŷ) + ec(ŷ)ŷT ′′(ŷ)
fy(ŷ).

Second, households earning more than ŷ work more due to the income effect of paying one
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dollar more tax. Saez also obtains the income effect as

−I(ŷ) = −
∫ ∞
ŷ

η(y)
T ′(y)

1− T ′(y)
f ∗y (y)dy,

where η(y) < 0 is the elasticity of earnings with respect to a change in unearned income.

Again using his equation (13), this can be written as

−I(ŷ) = −
∫ ∞
ŷ

η(y)
T ′(y)

1− T ′(y) + ec(y)yT ′′(y)
fy(y)dy.

Note that the second derivative of the tax schedule appears in S(ŷ) and I(ŷ) because changing

hours implies a change in the household’s marginal tax rate, which indirectly affects hours

via the substitution effect.

Let X(ŷ) denote the change in government revenues associated with the direct mechanical

increase in the marginal tax rate, and the substitution and income effects just described:

X(ŷ) = [1− Fy(ŷ)] + S(ŷ)− I(ŷ). (A6)

The amount of extra lump-sum transfers ∆Tr(ŷ) that can be financed in equilibrium is not

quite X(ŷ) because increasing transfers itself reduces labor supply via additional income

effects. The equilibrium increase in transfers can be computed from the government budget

constraint:

∆Tr(ŷ) = X(ŷ) + ∆Tr(ŷ)× I(0), (A7)

where I(0) < 0 denotes the income effect of increasing lump-sum transfers to all households

in the economy.

Substituting eq. (A6) into eq. (A7), we have

∆Tr(ŷ) =
[1− Fy(ŷ)] + S(ŷ)− I(ŷ)

1− I(0)
,

and thus

E(ŷ) = 1− ∆Tr(ŷ)

1− Fy(ŷ)
=
−I(0)

1− I(0)
− 1

1− Fy(ŷ)

S(ŷ)− I(ŷ)

1− I(0)
.

Distributional Gains and Efficiency Costs as Functions of Productivity In Section

3.3, we defined the distributional gain as

D(ŷ) ≡ 1−
∫∞
ŷ
Wy(y)uc(y)dFy(y)

[1− Fy(ŷ)]χ
.
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Notice that

Fy(y (α)) = Fα(α),

and also

fy(y)
dy

dα
= fα(α).

Therefore, the distributional gain of increasing the marginal tax rate at productivity level α̂

is simply

D(α̂) ≡ 1−
∫∞
α̂
W (α)uc(α)dFα(α)

[1− Fα(α̂)]χ
,

where χ is given by

χ =

∫ ∞
0

W (α)uc(α)dFα(α).

Similarly, we have

I(α̂) =

∫ ∞
α̂

η(α)
T ′(y(α))

1− T ′(y(α)) + ec(α)y(α)T ′′(y(α))
dFα(α).

Also, given our baseline utility function, applying Lemma 1 in Saez (2001), we have

S(α̂) = −ec(α̂)
T ′(y(α̂))

1− T ′(y(α̂)) + ec(α̂)y(α̂)T ′′(y(α̂))
y(α̂)fy(y(α̂))

= −ec(α̂)
T ′(y(α̂))

1− T ′(y(α̂)) + ec(α̂)y(α̂)T ′′(y(α̂))
fα(α̂)

1− T ′(y(α̂)) + ec(α̂)y(α̂)T ′′(y(α̂))

[1 + eu(α̂)] [1− T ′(y(α̂))]

= −ec(α̂)
T ′(y(α̂))

[1 + eu(α̂)] [1− T ′(y(α̂))]
fα(α̂)

= − 1

1 + σ

T ′(y(α̂))

1− T ′(y(α̂))
fα(α̂),

where eu is the uncompensated (Marshallian) labor supply elasticity.

Thus, the efficiency cost of increasing the marginal tax rate at productivity level α̂ is

E(α̂) =
−I(−∞)

1− I(−∞)
− 1

1− Fα(α̂)

S(α̂)− I(α̂)

1− I(−∞)
.

In Section 5.3, when the utility function is given by eq. (19) and thus I(α) = 0, this

expression simplifies to

E(α̂) =
1

1 + σ

T ′(y(α̂))

1− T ′(y(α̂))

fα(α̂)

1− Fα(α̂)
.
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B.2 Diamond-Saez Formula

We describe how the fiscal pressure intuition described in Section 5.2 meshes with the

Diamond-Saez formula. We first derive the Diamond-Saez formula for our economy. We

then use a modified version of the Diamond-Saez formula to discuss the factors that deter-

mine the shape of the optimal marginal tax schedule.

Derivation Reproducing the Mirrlees planner’s problem from eqs. (10-12), we have
max

{c(α),y(α)}

∫
W (α)

[
c(α)1−γ

1−γ −
Ω

1+σ

(
y(α)

exp(α)

)1+σ
]
dFα(α)

s.t. c(α)1−γ

1−γ −
Ω

1+σ

(
y(α)

exp(α)

)1+σ

≥ c(α̃)1−γ

1−γ −
Ω

1+σ

(
y(α̃)

exp(α)

)1+σ

for all α and α̃,∫
[y(α)− c(α)] dFα(α)−G ≥ 0.

The IC constraints state

U(α) ≡ c(α)1−γ

1− γ
− Ω

1 + σ

(
y(α)

exp(α)

)1+σ

= max
α̃

c(α̃)1−γ

1− γ
− Ω

1 + σ

(
y(α̃)

exp(α)

)1+σ

.

Using the envelope condition:

c(α)−γc′(α)− Ω

exp [(1 + σ)α]
y(α)σy′(α) = 0,

we get

U ′(α) =
Ω

exp [(1 + σ)α]
y(α)1+σ.

Thus, we can reformulate the planner’s problem as follows:
max

{U(α),y(α)}

∫
W (α)U(α)dFα(α)

s.t. U ′(α) = Ω
exp[(1+σ)α]

y(α)1+σ for all α,∫
[y(α)− c(α;U, y)] dFα(α)−G ≥ 0,

where c(α;U, y) is determined by U(α) = c(α)1−γ

1−γ −
Ω

1+σ

(
y(α)

exp(α)

)1+σ

. Denoting by µ(α) and

ζ the corresponding multipliers, we then set up a Hamiltonian with U as the state and y as

the control:

H ≡ {W (α)U(α) + ζ [y(α)− c(α;U, y)−G]} fα(α) + µ(α)
Ω

exp [(1 + σ)α]
y(α)1+σ,
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where fα is the derivative of Fα. By optimal control, the following equations must hold
0 = ζ [1− c(α)γΩ exp(−(1 + σ)α)y(α)σ] fα(α) + µ(α) Ω(1+σ)

exp[(1+σ)α]
y(α)σ,

−µ′(α) = [W (α)− c(α)γζ] fα(α),

µ(0) = µ(∞) = 0.

(A8)

Integrating the second equation over α and using µ(∞) = 0, we solve for the costate:

µ(α) =

∫ ∞
α

[W (s)− c(s)γζ] dFα(s).

Using µ(0) = 0, we also get the expression for ζ:

ζ =

∫
W (s)dFα(s)∫
c(s)γdFα(s)

=
1∫

c(s)γdFα(s)
.

We now consider the decentralization via income taxes (see Section 3.1). Using the FOC

(13), the first equation in (A8) can be written as

0 = ζT ′ (y(α)) fα(α) + µ(α) [1− T ′ (y(α))] c(α)−γ (1 + σ) ,

where T ′ is the marginal tax rate. Rearranging terms, we obtain

T ′ (y(α))

1− T ′ (y(α))
= (1 + σ)

1− Fα(α)

fα(α)

∫ ∞
α

[
1− W (s)c(s)−γ

ζ

]
c(α)−γ

c(s)−γ
dFα(s)

1− Fα(α)
,

where ζ =
1∫

c(s)γdFα(s)
.

Imposing logarithmic preferences in consumption, we finally get the Diamond-Saez formula

for our economy:

T ′(y(α))

1− T ′(y(α))
= (1 + σ)

1− Fα(α)

fα(α)

∫ ∞
α

[
1− W (s) · C

c(s)

]
c(s)

c(α)

dFα(s)

1− Fα(α)
, (A9)

where C denotes aggregate (and average) consumption.
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Discussion After some straightforward algebra, eq. (A9) can be rewritten as

T ′(y(α))

1− T ′(y(α))
= A(α)×B(α), (A10)

where A(α) = (1 + σ)× 1− Fα(α)

fα(α)
,

B(α) = Fa(α)× E [c(α̃)|α̃≥α]− E [c(α̃)|α̃<α]

c(α)
.

The two terms labelled A(α) and B(α) (as in Saez 2001) can be used to discuss the factors

that determine the shape of the optimal marginal tax schedule. In the following we interpret

these terms, taking the exercise varying government expenditure levels as an example. See

Section 5.2 for more detail.

The first component of the A(α) term, (1 + σ), indicates that the more elastic is labor

supply, the lower are optimal marginal tax rates, all else equal. The second component

of the A(α) term is the ratio of fraction of households more productive than α relative to

the density at α. Marginal rates should be high in regions of the productivity distribution

where this ratio is high, so that there are lots of more productive agents who will pay extra

taxes, but relatively few whose labor supply will be directly distorted by higher rates at the

margin. While the components of the A(α) term are easy to interpret, since they involve

only structural primitives of the model, they cannot explain the differential marginal tax

profiles corresponding to different values for G, since the A(α) term is independent of G.

Instead the way changes in G show up in the right-hand side of the Diamond-Saez formula

is in the B(α) term, which indicates a relationship between optimal marginal tax rates and

the shape of the consumption distribution. In particular, this term indicates that marginal

rates should be low when the particular measure of consumption inequality defined by B(α)

is low. When G is low, this measure of consumption inequality is relatively low at low produc-

tivity values—because generous lump-sum transfers offer a decent consumption floor—which

is consistent with low marginal tax rates at low income levels. Conversely, when G is high

and optimal transfers are smaller, there is more consumption inequality at the bottom of

the productivity distribution (a higher B(α)) which is consistent, via eq. (A10), with higher

optimal marginal tax rates.

While this discussion illustrates that the Diamond-Saez equation (A10) and panel A in

figure 4 are mutually consistent, it does not quite get to the bottom of why the optimal con-

sumption allocation looks the way it does. In particular, the B(α) term, which is the critical

factor for interpreting the optimal tax schedule, involves the distribution of consumption,

which is obviously endogenous to the tax system. The only reason that the consumption
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distribution—and thus the B(α) term—varies with G is because the optimal tax schedule it-

self varies with G. We thus conclude that while the Diamond-Saez formula is useful, it offers

limited intuition about the fundamental drivers of the shape of the optimal tax schedule.

C Theoretical Justification for Rescaling Variables

As described in Section 4, we scale model earnings, consumption and taxes by a factor Ȳ /Y ,

and wages by w̄ ≡ (Ȳ /Y )/(H̄/H).

The theoretical justification for rescaling model variables in this fashion is that in the

model one can scale wages by a factor ξ and introduce a constant ϕ in front of the disutility

from hours worked term in the utility function, and essentially preserve the same equilibrium

given appropriate rescaling of all equilibrium variables.

More precisely, consider a competitive equilibrium for our baseline economy in which

ξ = 1 and ϕ = 1 given a differentiable tax schedule T (y) with the associated marginal tax

rates T ′(y). Let w(α, ε), h(α, ε), y(α, ε), and c(α, ε) denote wages, hours, earnings, and

consumption in this equilibrium.

Now consider an alternative economy in which ξ̂ 6= 1 and ϕ̂ 6= 1. Let the tax schedule in

this alternative economy be given by

T̂ (ŷ) = ξ̂
1+σ
σ+γ ϕ̂

−1
γ+σT (ξ̂−

1+σ
σ+γ ϕ̂

1
γ+σ ŷ),

which implies

T̂ ′(ŷ) = T ′
(
ξ̂−

1+σ
σ+γ ϕ̂

1
γ+σ ŷ

)
.

It is straightforward to verify that there is an equilibrium in the rescaled hatted economy

in which

ŵ(α, ε) = ξ̂w(α, ε),

ĥ(α, ε) = ξ̂
1−γ
σ+γ ϕ̂

−1
γ+σh(α, ε),

ŷ(α, ε) = ξ̂
1+σ
σ+γ ϕ̂

−1
γ+σ y(α, ε),

ĉ(α, ε) = ξ̂
1+σ
σ+γ ϕ̂

−1
γ+σ c(α, ε).

Note that T̂ ′(ŷ) = T ′(y), so households of a given α type face the same marginal tax schedules

in the two economies.

When rescaling model variables to match average earnings and hours in the data, we are
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effectively setting ξ̂ and ϕ̂ so that Ŷ = Ȳ and Ĥ = H̄ which implies

Ȳ

Y
= ξ̂

1+σ
σ+γ ϕ̂

−1
γ+σ

and
H̄

H
= ξ̂

1−γ
σ+γ ϕ̂

−1
γ+σ .

These two equations implicitly define the requisite adjustment factors ξ̂ and ϕ̂. Note that

w̄ = (Ȳ /Y )/(H̄/H) = ξ̂.

D Computational Method

D.1 Mirrlees Optimal Taxation

We briefly describe how we compute the optimal allocation in the baseline economy. We

solve the Mirrlees planner’s problem (10) for our discretized economy numerically. We first

note that with the preference class we consider in Section 4, the local incentive compatibility

constraints are necessary and sufficient for the global incentive compatibility constraints (12)

to be satisfied (see Carroll 2012):

U(αi, αi) ≥ U(αi, αi−1) for all i = 2, · · · , I

U(αi−1, αi−1) ≥ U(αi−1, αi) for all i = 2, · · · , I.

We then solve for the allocation exactly at each grid point. Specifically, we use forward

iteration (forward from α1 to αI) to search for an allocation that satisfies all the first-order

conditions, the incentive constraints above, and the resource constraint (11). Finally, we

confirm that before-tax income is nondecreasing in wages, concluding that the resulting

allocation is optimal given that our utility function exhibits the single-crossing property.

Note that we never assume that the upward incentive constraints are slack, because their

slackness is not guaranteed for any economy with I > 2. In our baseline economy, some

upward incentive constraints are indeed binding at the bottom of the α distribution, which

results in bunching.

This computational method contrasts with the typical approach in the literature that

looks for approximate marginal tax rate schedules that satisfy the Diamond-Saez formula

(the social planner’s first-order condition), which implicitly defines the optimal tax schedule

(see, e.g., the appendix to Mankiw et al. 2009). Since we do not iterate back and forth

between candidate tax schedules and agents’ best responses to those schedules, our method

is much faster, especially when the grid is very fine.
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Table A1: Deviation from Diamond-Saez formula

Prod. Percentile 0.01 0.1 1 25 50 75 99 99.9 99.99

A(α)B(α)− T ′(y(a))
1−T ′(y(α))

0.0006 0.0006 0.0006 0.0007 0.0008 0.0010 0.0019 0.0023 0.0018

Table A1 shows that our numerical solution satisfies the Diamond-Saez formula (eq.

A10) almost exactly, even though (i) we have assumed a discrete distribution for α, while

the formula assumes a continuous distribution, and (ii) we have not used the formula directly

for computation.

D.2 Pareto-Improving Tax Reforms

The first-stage planner’s problem with a set of Pareto-improving constraints is given by

max
{c(α),y(α)}

∑
i

πiW (αi)U(αi, αi), (A11)

subject to
∑
i

πic(αi) +G =
∑
i

πiy(αi),

U(αi, αi) ≥ U(αi, αj) for all i, j (A12)

U(αi, αi) ≥ UUS(αi) for all i. (A13)

Notice that the left hand sides of eqs. (A12) and (A13) are the same and thus some con-

straints will be slack. Solving this problem is thus challenging computationally because the

pattern of which subset of constraints is binding at the optimum is unknown ex ante.

To solve this problem, first denote

Ūi = UUS(αi).

We then consider the following planner’s problem that replaces the Pareto-improving con-

straints (A13) with a penalty function in the objective function:

max
{c(α),y(α)}

∑
i

πi

[
W (αi)U(αi, αi)− γmin

{
U(αi, αi)− Ūi, 0

}2
]
, (A14)

subject to
∑
i

πic(αi) +G =
∑
i

πiy(αi),

U(αi, αi) ≥ U(αi, αj) for all i, j

where γ > 0 controls the magnitude of penalty. Since the objective function is still dif-

ferentiable, we can solve this alternative problem by applying the computational method

16



(A) Marginal Tax Rate (%)

2.5 5 10 20 40 80 160 320 640 1280
0

10

20

30

40

50

60

70
(B) Marginal Tax Rate (%)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Figure A1: Optimal Tax Policy against Income. The figure plots the optimal Mirrleesian
tax schedules against income (in log scale in panel A, in level in panel B) and the baseline
HSV approximation to the U.S. tax and transfer system.

described in Appendix D.1. However, the resulting allocation will not satisfy the original

Pareto-improving constraints (A13); it is optimal for the planner to pay the penalty for a

range of i′s where the Pareto-improving constraints are tight.

In the next step, given the solution to the problem (A14), we update {Ūi} by adding a

sufficiently small value ε > 0 to Ūj for the grid point j where the Pareto-improving constraint

is most violated:

j = arg min
i
U(αi, αi)− Ūi .

With the updated {Ūi}, we solve problem (A14) again. Because the penalty at j is larger

than before, the planner will provide more utility for the agent with αj while respecting

all the incentive compatibility constraints. Therefore, the resulting allocation violates the

original Pareto-improving constraints less severely.

We keep updating {Ūi} and solving the problem (A14) until the resulting allocation

satisfies all the Karush-Kuhn-Tucker conditions of the original planner’s problem (A11).

E Baseline Optimal Tax Policy

Optimal Taxes as a Function of Income Panel A of figure 2 shows that the marginal

tax schedule is generally increasing in productivity α. However, this does not necessarily

mean that the marginal tax schedule is also increasing in income y, because y is a function

of α and thus the marginal tax schedule depends on how y changes with α.

Figure A1 plots the optimal Mirrleesian tax schedules against income y. Reassuringly,

the plot shows that the optimal marginal tax schedule is increasing in income, just as it is

increasing in α (panel A of figure 2.)
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Figure A2: Allocations and Tax Rates for Low Income Households. Panel A plots household
consumption against household income at the bottom of the income distribution (red solid line)
and the indifference curves (blue dashed lines) for the least and most productive households
in the bunched set, labelled IC1 and ICk. Panel B plots the marginal tax rate under the
assumption that the marginal tax rate below the income level of the bunched set is given by
the upper bound of the rate that implements the optimal allocation.

Optimal Taxes at the Bottom The optimal allocation features bunching at the bottom

of the productivity distribution: all household types in a set {α1, · · · , αk} receive the same

income and consumption allocation, labelled (y, c) in panel A of figure A2.5 The red solid line

to the right of this point traces optimal allocations (y(αi), c(αi)) for i ≥ k. The indifference

curves that go through the point (y, c) for the least and most productive households in the

bunched set are labelled IC1 and ICk. To decentralize the optimal allocation, consumption

c(y) must be sufficiently small for y < y (and thus implied net taxes T (y) = y − c(y)

sufficiently large) so that no households will choose to deliver such low income. There are

many possible consumption schedules that ensure this: the set of such schedules is shaded

grey in the figure, where the upper bound of the set is given by IC1(y)

Restricting attention to continuous tax functions, it is immediate that as income ap-

proaches y from below, 1 − T ′(y) (the slope of the budget line) must be greater than the

slope of IC1(y) at y = y. This translates into an upper bound on the marginal tax rate under

any optimal tax scheme of 5.5 percent. In panel B, we assume that this marginal tax rate

applies for all y < y (the corresponding allocation is traced by the red solid line to the left

of (y, c) in panel A). As income approaches y from above, 1 − T ′(y) must be smaller than

the slope of ICk(y) at y = y in order to dissuade type k from delivering more income. This

5This implies that hours are decreasing in α, while the marginal tax rate is strictly positive (see Ebert
1992) and increasing in α (see eq. 13). See figure 2.
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translates into a lower bound on the marginal tax rate of 21.0 percent. Thus, a jump in

the marginal tax rate at y is a necessary property of any tax function that implements the

optimal allocation.

It has long been recognized that tax systems featuring discrete steps in marginal tax

rates will induce bunching at the income levels where rates jump. In this economy, bunching

is optimal, and a jump in the marginal rate is required to deliver bunching.

F Proofs of Propositions

F.1 Proof of Proposition 1

Let ∆ > 0 denote the decline in lump-sum transfers.

Proof of Part (i) From eq. (20), E(α) is independent of ∆. �

Proof of Part (ii) Given a utility function of the form (19), define the marginal utility

conditional on reduced lump-sum transfers:

uc(α,∆) =
1

c(α)− h(α)1+σ

1+σ
−∆

,

and the average marginal utility:

χ (∆) = E [uc(α,∆)] .

The gain from redistribution can be written as

D̃(α,∆) =

∫ ∞
α

[
1− uc(s,∆)

χ (∆)

]
dFα(s).

Note that the initial allocation (i.e., before reducing lump-sum transfers) corresponds to

uc(α, 0), χ (0) and D̃(α, 0).

We want to show that D̃(α,∆) > D̃(α, 0) for any finite α and ∆ > 0. Note D̃(−∞,∆) =

D̃(−∞, 0) = 0 and D̃(∞,∆) = D̃(∞, 0) = 0 by definition, and

D̃(α,∆)− D̃(α, 0) =

∫ ∞
α

(
uc(s, 0)

χ (0)
− uc(s,∆)

χ (∆)

)
dFα(s).
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It then suffices to show that there exists α̃ such that

uc(α, 0)

χ (0)
<

uc(α,∆)

χ (∆)
for all α ∈ (−∞, α̃) , and (A15)

uc(α, 0)

χ (0)
>

uc(α,∆)

χ (∆)
for all α ∈ (α̃,∞) .

We show that α̃ is given by the value for α such that

uc(α̃, 0)

χ (0)
=
uc(α̃,∆)

χ (∆)
.

Note that there must be at least one such value, because the two sides of this equation are

two different continuous functions with the same mean when integrated over the distribution

for α (1 in both cases).

We can prove the first case in (A15) because for α ∈ (−∞, α̃) ,

χ (0)

χ (∆)
=

uc(α̃, 0)

uc(α̃,∆)
=
c(α̃)− h(α̃)1+σ

1+σ
−∆

c(α̃)− h(α̃)1+σ

1+σ

>
c(α)− h(α)1+σ

1+σ
−∆

c(α)− h(α)1+σ

1+σ

=
uc(α, 0)

uc(α,∆)
,

where the inequality comes from the fact that c(α)− h(α)1+σ

1+σ
is positive and increasing in α.

We can also prove the second case in (A15) analogously. �

Proof of Part (iii) We want to show that α∗fixed < α∗, where α∗fixed is the distributional

gain maximizing value of α when lump-sum transfers are reduced, but the marginal tax

schedule is unchanged:

uc(α
∗
fixed,∆) = χ (∆) = E [uc(α,∆)] .

Notice that α∗fixed can be regarded as the “certainty equivalent” given that uc(·,∆) is a

convex function. Therefore, following Pratt (1964), α∗fixed < α∗ is equivalent to the statement

that uc(·, 0) is a concave transformation of uc(·,∆). It thus suffices to show that there exists

an increasing concave function ψ (·) such that uc(α, 0) = ψ (uc(α,∆)) for all α.

Now define ψ (x) by

ψ(x) =
1

1
x

+ ∆
.

It is then straightforward to show that uc(α, 0) = ψ (uc(α,∆)) for all α, and ψ is increasing
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and concave:

dψ(x)

dx
=

1

x2
(

1
x

+ ∆
)2 =

1

(1 + ∆x)2 > 0,

d2ψ(x)

dx2
=

−2∆

(1 + ∆x)3 =
−2∆

x
ψ(x)

dψ(x)

dx
< 0,

because x > 0 and ψ(x) > 0. � Q.E .D.

F.2 Proof of Proposition 2

Given the HSV tax function, decision rules as a function of τ are as follows:

c(α;λ, τ) = λ(1− τ)
1−τ
1+σ exp [(1− τ)α] exp

(
1− τ
σ

σ2
ε

2

)
, (A16)

h(ε; τ) = (1− τ)
1

1+σ exp

(
−1

σ2

σ2
ε

2

)
exp

( ε
σ

)
. (A17)

Plugging these into the resource constraint (1), we get

λ(τ) =
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε

2

)
−G

(1− τ)
1−τ
1+σ exp

(
1−τ
σ

σ2
ε

2

) ∫
exp [(1− τ)α] dFα(α)

.

We substitute these expressions into the planner’s objective function in order to get an

unconstrained optimization problem with one choice variable, τ. Specifically, the planner’s

objective function is∫
W (α)

[
log (c(α; τ))−

∫
h(ε; τ)1+σ

1 + σ
dFε(ε)

]
dFα(α),

and government expenditure is given by

G = g

∫∫
exp(α + ε)h(ε; τ)dFα(α)dFε(ε).

Substituting eqs. (A16) and (A17) into these, the optimization problem can be rewritten as

max
τ

(1− τ)
∫
α ·W (α)dFα(α)− log(

∫
exp [(1− τ)α] dFα(α)) + log

[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε

2

)
−G

]
− 1−τ

1+σ

where

G = g(1− τ)
1

1+σ exp

(
1

σ

σ2
ε

2

)
. (A18)
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Note that the level of the government expenditure G is fixed when the planner is solving the

problem, and hence it is not a function of τ .

Given the Pareto weight function (18), the optimization problem becomes6

max
τ

(1−τ)

λα
λα+θ

exp

[
−µαθ+σ2αθ

2

2

] ∫ α exp(−θα)dFα(α)− log
(

λα
λα−1+τ

)
− µα(1− τ)− σ2

α(1−τ)2

2

+ log
[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε

2

)
−G

]
− 1−τ

1+σ
.

(A19)

Assume this problem is well-defined; that is,
∫
α exp(−θα)dFα < ∞. We want to further

simplify this term.

Define V (α, θ) ≡ exp(−θα)fα(α), where fα is the derivative of Fα. We then have

∂V (α, θ)

∂θ
= −α exp(−θα)fα(α).

Lemma 5 Assume the support of θ is compact, [θ, θ̄]. Then the integral and the derivative

of V are interchangeable; that is,∫
∂

∂θ
V (α, θ)dα =

∂

∂θ

∫
V (α, θ)dα.

Proof. It suffices to show that (i) V : R × [θ, θ̄] → R is continuous and ∂V
∂θ

is well-defined

and continuous in R× [θ, θ̄], (ii)
∫
V (α, θ)dα is uniformly convergent, and (iii)

∫
∂
∂θ
V (α, θ)dα

is uniformly convergent.

(i) is obvious since fα is continuous.

To prove (ii), we rely on the Weierstrass M-test for uniform convergence. That is, if

there exists V̂ : R→ R such that V̂ (α) ≥ |V (α, θ)| for all θ and V̂ has an improper integral

on R, then
∫
V (α, θ)dα converges uniformly. Now define V̂ (α) ≡ sup

θ∈[θ,θ̄]

|V (α, θ)|. Then

6The moment-generating function for the EMG distribution, EMG(µα, σ
2
α, λα), for t ∈ R is given by∫

α

exp (αt) dFα =
λα

λα − t
exp

[
µαt+

σ2
αt

2

2

]
.

22



V̂ (α) ≥ |V (α, θ)| by construction. Also V̂ has an improper integral on R because∫ ∞
−∞

V̂ (α)dα =

∫ 0

−∞
V (α, θ̄)dα +

∫ ∞
0

V (α, θ)dα

≤
∫ ∞
−∞

V (α, θ̄)dα +

∫ ∞
−∞

V (α, θ)dα

=
λα

λα + θ̄
exp

[
−µαθ̄ +

σ2
αθ̄

2

2

]
+

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

]
<∞,

where the first inequality comes from V (α, θ) ≥ 0 for any α and θ ∈ [θ, θ̄]. Thus,
∫
V (α, θ)dα

is uniformly convergent.

We apply a similar logic to prove (iii) and find Ṽ : R→ R such that Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣ for

all θ and Ṽ has an improper integral on R. Specifically, define Ṽ (α) ≡ sup
θ∈[θ,θ̄]

∣∣∣∂V (α,θ)
∂θ

∣∣∣ . Then

Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣ by construction and Ṽ has an improper integral on R, because the original

problem is assumed to be well-defined, and hence
∫
α exp(−θα)dFα < ∞ for any θ ∈ [θ, θ̄].

Applying this lemma, we get∫
α exp(−θα)dFα(α) = − ∂

∂θ

∫
exp(−θα)dFα(α)

= − ∂

∂θ

{
λα

λα + θ
exp

[
−µαθ +

σ2
αθ

2

2

]}
=

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

](
1

λα + θ
+ µα − σ2

αθ

)
.

Substituting this expression into eq. (A19), the optimization problem becomes

max
τ

(1− τ)
(

1
λα+θ

− σ2
αθ − 1

1+σ

)
+ log (λα − 1 + τ)− σ2

α(1−τ)2

2
+ log

[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε

2

)
−G

]
.

The first-order condition with respect to τ is

0 = − 1

λα + θ
+ σ2

αθ +
1

1 + σ
+

1

λα − 1 + τ
+ σ2

α(1− τ)−

[
1− G

exp

(
1
σ
σ2ε
2

)
(1−τ)

1
1+σ

]−1

(1− τ)(1 + σ)
. (A20)

Substituting eq. (A18) into this, we have

σ2
αθ −

1

λα + θ
= −σ2

α(1− τ)− 1

λα − 1 + τ
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
.
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Therefore, the planner’s weight θ must solve eq. (21). Q.E .D.

F.3 Proof of Proposition 3

Consider general separable preferences:

u (c)− v (h) .

For a generic tax function T , the household budget constraint is given by c = y − T (y).

Let the function U(α;T ) denote equilibrium utility for a household with productivity

α facing a tax schedule T and let c(α;T ) and y(α;T ) denote the associated equilibrium

allocations. We have

U(α;T ) = u (y (α;T )− T (y (α;T )))− v
(
y (α;T )

exp(α)

)
.

Lemma 6 Consider two tax schedules T1 and T2. Suppose at some productivity level α,

U(α;T1) = U(α;T2), U ′(α;T1) = U ′(α;T2) and T1 and T2 are differentiable. Then c(α;T1) =

c(α;T2), y(α;T1) = y(α;T2), T1(y(α;T1)) = T2(y(α;T2)), and T ′1(y(α;T1)) = T ′2(y(α;T2)).

Proof. For a tax function T , we have

U ′(α;T ) = u′ (y (α;T )− T (y (α;T )))
∂y (α;T )

∂α
[1− T ′(y (α;T ))]

−v′
(
y (α;T )

exp(α)

)[
1

exp(α)

∂y (α;T )

∂α
− y (α;T )

exp(2α)

]
= v′

(
y (α;T )

exp(α)

)
y (α;T )

exp(2α)
,

where the last line comes from substituting in the household first-order condition.

It follows that if U ′(α;T1) = U ′(α;T2), then y(α;T1) = y (α;T2). Therefore, if it is also

the case that U(α;T1) = U (α;T2), then c(α;T1) = c (α;T2). From the budget constraint and

the FOC of the household it then follows that T1(y(α;T1)) = T2(y(α;T2)), and T ′1(y(α;T1)) =

T ′2(y(α;T2)).

If the Pareto-improving constraints bind in an open interval Γ ⊂ A, then U(α;TUS) =

U(α;TPI) and U ′(α;TUS) = U ′(α;TPI) for all α ∈ Γ. Therefore, applying the lemma, if TUS

and TPI are differentiable on Γ, then we have c(α;TUS) = c(α;TPI), y(α;TUS) = y(α;TPI),

TUS(y(α;TUS)) = TPI(y(α;TPI)), and TUS′(y(α;TUS)) = TPI′(y(α;TPI)). Q.E .D.
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G Sensitivity Analysis

We explore the sensitivity of the optimal Mirrleesian tax schedule to preferences, the extent

of private insurance, the shape of the productivity distribution, and the planner’s taste for

redistribution. We also explore the performance of our simple parametric functional forms for

taxation, and the robustness of our result that the best policy in the HSV class is preferred

to the best affine policy. We then consider tax systems that condition on observables like

age and education. Finally, we show how the coarseness of the discrete grid on productivity

is quantitatively important for the shape of the optimal tax schedule.

G.1 Preferences

In Section 5.1, we discuss how optimal policies change when we consider different values

for risk aversion γ and the labor elasticity parameter σ. Here we offer some more details

on the sensitivity analysis with respect to these parameters. Figure A3 plots distributional

gain/efficiency cost functions relative to the baseline, consumption and hours by productivity

alongside optimal marginal tax schedules.

When γ = 5, the profile for hours by productivity under the optimal policy is rising for

households with wages below around $10 per hour, and decreasing thereafter. The upward-

sloping portion reflects the fact that consumption (and the associated hours-reducing income

effect) increases only slowly with wages at the bottom of the productivity distribution, given

large lump-sum transfers. The declining pattern at the top reflects the existence of strong

income effects coupled with a tax system that is effectively near proportional for high wage

workers.

The welfare gains of switching from our HSV approximation to the current tax and

transfer system to this much more redistributive one are huge, approaching 10 percent of

consumption (see table A2), even though this reform depresses aggregate output by a similar

amount.

Because changing the risk aversion parameter γ changes household decision rules, it also

changes the models predictions for cross-sectional inequality, so that the model no longer

replicates our empirical targets for earnings and consumption disperson. One way to change

risk aversion without changing these predictions is to introduce preference heterogeneity in

the disutility from work that is correlated with productivity. We have therefore explored

introducing an idiosyncratic weight exp($α) in front of the disutility of leisure term in

utility. When the tax and transfer system is in the HSV case with progressivity parameter

τ and when $ = (1 − τ)(1 − γ), the equilibrium decision rules for hours and consumption

are identical (up to a constant of proportionality) for any value for γ. It follows that the
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Figure A3: Optimal Policies with Different Preference Parameters. The figure plots the
optimal Mirrleesian tax schedules, distributional gain/efficiency cost functions relative to
the baseline, consumption and corresponding hours for higher risk aversion (panels A to
D) and for different labor supply elasticities (panels E to H).
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Table A2: Key Statistics for Additional Sensitivity

Model Outcomes

T ′ (%) Tr ($) Tr
Y

(%) Tr+G
Y

ω (%) ∆Y (%)

HSVUS 33.5 1, 753 2.3 21.1 — —

Baseline 49.1 15, 400 21.5 41.8 2.07 −7.32

High Risk Aversion: γ = 5 73.4 35, 669 47.1 67.8 9.88 −9.59

Low Labor Elasticity: σ = 4 56.8 19, 770 27.1 47.5 4.05 −7.31

High Govt. Expenditure: g = 0.7 59.4 −2, 957 −3.5 59.9 8.35 −10.42

No Ins. Shocks: Exp. Left Tail 56.5 22, 183 33.7 54.7 8.04 −10.59

Note: See the notes to table 2.

equilibrium values for all cross-sectional moments involving log wages, log hours and log

consumption are then independent of the choice for γ. We have computed the optimal tax

schedule in this model for different values for γ, and found that they are similar to the ones

plotted above (see panel A of figure A4).

Finally, we have also computed a case in which we simultaneously increase risk aversion

and eliminate insurable risk, thereby simultaneously increasing consumption inequality (by

eliminating private insurance) and the welfare cost of consumption inequality (via greater

curvature in utility). In this case, the optimal policy calls for very high but still increasing

marginal tax rates across most of the income distribution (panel C).

G.2 Fiscal Pressure

In Section 5.2, we discuss how optimal policies change when fiscal pressure is higher. Figure

A5 is supplemental to Figure 4. It plots optimal marginal tax schedules, distributional

gain/efficiency cost functions relative to the baseline, consumption and hours by productivity

for the economies with higher government expenditures or no insurable shocks.

G.3 Extent of Private Insurance

In Section 5.2, we showed that incorporating private insurance has an impact on the shape

of the optimal tax and transfer schedule, and that our finding of an upward-sloping marginal

tax profile is robust to any plausible variation in the extent of private insurance, as long as

we retain the assumption that wages follow a Pareto lognormal distribution.

In this section, we provide more details about the optimal policies. Table A3 shows how

allocations and tax schedules change when we rule out private insurance by setting σ2
ε = 0

and increase the variance of αN , the normally distributed uninsurable component, so as to
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Figure A4: More Sensitivity with respect to Preference Parameters. Panels A and B plot the
optimal Mirrleesian tax schedules and hours for the economy with preference heterogeneity. Panels
C and D plot those for the economy with higher risk aversion and no insurable shocks.

leave the total variance of log wages unchanged. Since the dispersion of uninsurable shocks is

now larger than in the baseline calibration, there would now be more poverty, absent public

redistribution. Thus, Mirrlees policy now features larger lump-sum transfers to provide

a firmer consumption floor (32.5 percent of GDP rather than 21.5 percent) which in turn

necessitates higher marginal tax rates: the utilitarian-optimal income-weighted marginal tax

rate is 58.6 percent compared to 49.1 percent in the baseline model. The maximal welfare

gains from tax reform are more than four times as large as in the baseline model and are

associated with an output decline of 11.6 percent.

The table also shows that the result that the best policy in the HSV class is preferred

to the best affine policy hinges on the existence of private insurance. The best affine tax

system is now preferred to the best policy in the HSV class. We conclude that to accurately

characterize the qualitative nature of optimal taxation it is essential to explicitly account for

the existence of private insurance.

G.4 Shape of the Wage Distribution

In Section 5.2, we showed that the shape of the wage distribution has an important quan-

titative impact on the shape of the optimal tax and transfer schedule. We now discuss this

issue further.
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Figure A5: Optimal Policies with High Fiscal Presure. The figure plots the optimal
Mirrleesian tax schedules, distributional gain/efficiency cost functions relative to the base-
line, consumption and corresponding hours for higher government expenditures (panels
A to D) and for no insurable shocks (panels E to H).
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Table A3: Optimal Tax and Transfer System with No Insurable Shocks

System Parameters Outcomes

T ′ (%) Tr ($) Tr
Y

(%) Tr+G
Y

ω (%) ∆Y (%)

HSVUS λ : 0.851 τ : 0.181 33.5 1, 809 2.4 21.2 — —

HSV∗ λ : 0.802 τ : 0.422 54.4 6, 906 10.3 31.5 5.62 −10.97

Affine τ0 : $− 25, 303 τ1 : 58.1% 58.1 23, 951 36.0 57.2 8.35 −11.36

Mirrlees 58.6 21, 586 32.5 53.8 8.63 −11.57

Note: See the notes to table 2.
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Figure A6: Lognormal versus Pareto Lognormal Wage Distribution. Panel A plots the pro-
files of optimal marginal tax rates. Panel B plots the distributional gain function of lognormal
case, relative to that of the baseline Pareto lognormal case.

Lognormal Productivity Distribution We consider (counterfactually) eliminating the

Pareto right tail in the productivity distribution, by assuming that α is Normally distributed.

We adjust the variance σ2
α so that the total variance of α is identical to the baseline case.

Relative to the baseline, the distribution for the uninsurable component of wages has a much

thinner right tail and a heavier left tail. We hold fixed all other parameter values and set

the taste for redistribution parameter to θ = 0. Figure A6 plots the optimal tax schedule in

this lognormal case (red dashed line) relative to the baseline Pareto lognormal economy.

We find that the optimal tax is mildly decreasing in income, rather than increasing in

income. This is broadly consistent with Mirrlees (1971) original finding of roughly constant

optimal marginal rates (Mirrlees also assumed a lognormal productivity distribution).

The impact of the shape of the productivity distribution on the shape of the optimal

tax schedule is easy to understand. Eliminating the heavy right tail in the productivity

distribution reduces the distributional gains from high marginal tax rates on the rich, thus
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Table A4: Optimal Tax and Transfer System with Lognormal Wage Distribution

System Parameters Outcomes

T ′ (%) Tr ($) Tr
Y

(%) Tr+G
Y

ω (%) ∆Y (%)

HSVUS λ : 0.828 τ : 0.181 33.5 1, 674 2.2 21.0 — —

HSV∗ λ : 0.813 τ : 0.287 42.7 3, 561 4.8 24.5 0.64 −4.50

Affine τ0 : $− 18, 508 τ1 : 45.1% 45.1 17, 869 24.4 44.3 1.96 −5.32

Mirrlees 44.4 18, 735 25.5 45.3 2.06 −5.05

Note: See the notes to table 2.

moderating optimal marginal rates at the top. Reduced revenue from soaking the rich

increases the distributional gains from raising marginal rates at lower income levels. At the

same time, the existence of more very low income households increases the planner’s desire

to provide transfers, further amplifying distributional gains at the bottom. The net result is

that optimal marginal tax rates are now mildly declining in income.

Table A4 compares the optimal Mirrlees policy to the best-in-class HSV and affine tax

schemes given a lognormal productivity distribution. A key result is that the best affine

tax and transfer system dominates the best system in the HSV class and very closely ap-

proximates the second-best allocation. Thus, assuming a lognormal distribution for wages

resurrects the original conclusion of Mirrlees (1971), namely, that the optimal nonlinear

income tax is approximately linear. We conclude, like Saez (2001), that it is essential to

carefully model the empirical productivity distribution for the purposes of providing quan-

titative guidance on the design of the tax and transfer system.

Economy with No Income Effects and Pareto Distribution In Section 5.3, we con-

sidered the case of preferences that have no income effects. Given the utility function (19),

the efficiency cost of taxation then simplifies to

E(α) =
T ′(α)

1− T ′(α)

1

1 + σ

fα(α)

1− Fα(α)

Note that, besides the impact of the marginal tax rate itself, efficiency costs vary with

productivity only because of exogenous variation in the inverse Mills ratio.

We now further assume a Pareto distribution for productivity, assuming that α is expo-

nentially distributed. In this case, the inverse Mills ratio becomes constant and equal to λα.

Efficiency costs thus vary with productivity only because marginal tax rates do. So any slope

to the optimal marginal tax schedule must be entirely driven by distributional concerns.
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Figure A7: Model with No Income Effects and Pareto Wage Distribution. The figure plots
the profile of optimal marginal tax rates for the economy with no income effects and a Pareto
wage distribution.

Table A5: Alternative Social Preferences

Social Preferences Mirrlees Allocations Welfare Gain ω (%)

θ T ′ (%) Tr ($) ∆Y (%) Mirrlees HSV∗ Affine ω(HSVUS,HSV∗)

ω(HSVUS,Mirrlees)

Laissez-Faire −1 8.2 −6, 925 10.57 3.71 3.54 3.70 95%

Emp. Motivated −0.517 33.4 5, 235 0.03 0.05 — −0.53 0%

Utilitarian 0 49.1 15, 400 −7.32 2.07 1.65 1.36 80%

Rawlsian ∞ 71.1 32, 574 −21.98 661.6 329.3 606.2 50%

Note: See the notes to table 2.

Figure A7 shows that the optimal marginal tax schedule in this case is upward-sloping.

G.5 Alternative Social Preferences

Table A5 shows summary statistics for the optimal Mirrlees policies under the different

Pareto weight functions discussed in Section 5.4.7 Clearly, a stronger taste for redistribution

translates into higher average marginal tax rates, larger lump-sum transfers, and larger

output declines relative to the baseline tax policy (HSV with τ = 0.181). Moving from the

laissez-faire to the Rawlsian objective, the average income-weighted marginal tax rate rises

from 8.2 percent to 71.1 percent.

The choice of Pareto weight function also has a huge impact on the potential welfare

gains from policy reform. If we measure welfare gains using a Rawlsian welfare function as

7Public consumption G is fixed exogenously, and is thus invariant to θ.
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Figure A8: HSV versus Mirrlees tax functions with θ = θUS. The figure contrasts tax rates
and allocations under the current HSV tax system to those under the Mirrlees policy using
our empirically motivated Pareto weight function.

our baseline, we would conclude that tax reform could raise welfare by 662 percent. Given

the empirically motivated Pareto weight function, in contrast, the maximum welfare gain

from tax reform is only 0.05 percent, indicating that our HSV approximation to the U.S.

tax system is close to efficient. The welfare gain here is very small because consumption

and hours allocations under the current HSV schedule are very similar across most of the

distribution for α to those chosen by the Mirrlees planner with taste for redistribution θUS

(see figure A8). Allocations are more different at the extremes of the distribution, but the

population density in those ranges is very small.8

Table A5 indicates that assuming an empirically motivated Pareto weight function does

not change our finding from the utilitarian case that the best-in-class HSV function is pre-

ferred to the best affine policy. In fact, given θ = θUS moving from the current HSV system

to the best possible affine tax scheme reduces welfare by 0.53 percent, in contrast to a 0.05

percent welfare gain under the best HSV system.

Figure A9 offers another perspective on the properties of optimal allocations at the

8The maximum welfare gain from tax reform is small even though the HSV schedule violates some
established theoretical properties of optimal tax schedules. In particular, it violates the prescriptions that
marginal rates should be everywhere non-negative, and that the rate should be zero at the upper bound of
the productivity distribution.
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Figure A9: Allocations for low income households. The figure plots household consumption
against household income at the bottom of the income distribution under the Mirrlees (red
solid), HSV (blue dashed), and best-in-class affine (blue dotted) tax systems. Each tax scheme
is best-in-class given the empirically motivated Pareto weight function.

bottom end of the income distribution. Here we plot the level of household consumption

against the level of household income: net transfers is the difference between the two. We

truncate the plot at 30 percent of average income to highlight how the different tax systems

treat the poor. The red solid line traces out the budget set associated with constrained

efficient allocations. The line stops at the red dot, which corresponds to the level of household

income that the planner asks the least productive household to produce, y∗(α1). As reported

in table A5, this household receives a small net transfer. What does the Mirrlees tax schedule

look like for lower income levels? An upper bound on net transfers is given by the indifference

curve for the α1 type that is tangent to the Mirrlees budget set at the point (y∗(α1), c∗(α1)).

Any consumption schedule (and associated net tax schedule) that lies everywhere below this

indifference curve will decentralize the Mirrlees solution; the set of possible such schedules

is shaded light grey in the figure.

Figure A9 also plots the best income tax schedules in the affine and HSV classes. It is

clear from the plot that the HSV schedule is closer than the affine one to the optimal Mirrlees

schedule. The affine schedule implies net transfers that are much too generous at the bottom

of the distribution, because the affine planner can only redistribute via transfers. In contrast,

the Mirrlees planner prefers to redistribute primarily via an increasing marginal tax schedule.

Transfers to the least productive households are small under the optimal Mirrlees policy in

part because the planner puts relatively low weight on the least productive households, and
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Figure A10: Maximum welfare gains from tax reform. The figure plots the maximum possible
gains from tax reform for a range of values for the taste for redistribution parameter θ. Three
lines are plotted, corresponding to the best policies in the unrestricted Mirrlees class (red
solid), the HSV class (blue dashed), and the affine class (blue dotted).

in part because the fact that a portion of wage dispersion is privately insurable reduces the

need for public insurance.

Figure A10 plots welfare gains under alternative tax systems, for a range of values for

θ. The red solid line is the welfare gain associated with moving from the current HSV tax

system to the optimal Mirrlees scheme, and the blue dashed and dotted lines are the gains

moving from to the best-in-class HSV and affine schemes.

The first message from figure A10 is that for most intermediate values for θ, the red solid

and blue dashed lines are not far apart, indicating that the lion’s share of potential welfare

gains from tax reform can be achieved by adjusting progressivity while retaining the HSV

functional form. For example, the sizable welfare gains from tax reform that are possible

under the utilitarian objective (θ = 0) almost entirely reflect the fact that a utilitarian

planner wants a more redistributive tax system—and do not signal that the current system

redistributes in a very inefficient way.

Second, the optimal HSV scheme outperforms the optimal affine scheme for a wide range

of intermediate values for θ between −0.880 and 0.152.

Third, when the taste for redistribution is either sufficiently weak or sufficiently strong,

an affine scheme is preferred. For example, the laissez-faire planner prefers an affine tax

because he wants to use lump-sum taxes to raise revenue; this planner chooses negative

transfers. The Rawlsian planner prefers an affine tax because he values a high consumption
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floor for the least productive agents. However, as we argued earlier, it is difficult to reconcile

the tax and transfer system currently in place in the United States with either a very low or

a very high taste for redistribution.

G.6 Type-Contingent Taxes

In the baseline model, idiosyncratic productivity was divided into a privately uninsurable

component α and a privately insurable component ε. Now we introduce a third component

κ which is privately uninsurable but observed by the planner. This component is designed

to capture differences in wages related to observable characteristics such as gender, age, and

education. We assume that κ is drawn before family insurance comes into play and therefore

cannot be insured privately.

We set the variance of this observable fixed effect σ2
κ equal to the variance of wage dis-

persion that can be accounted for by standard observables in a Mincer regression. Heathcote

et al. (2010) estimate the variance of cross-sectional wage dispersion attributable to observ-

ables to be σ2
κ = 0.108. For the sake of simplicity, we assume a two-point equal-weight

distribution for κ. This gives exp(κHigh)/ exp(κLow) = 1.93.

The total variance of the privately uninsurable component of wages is unchanged relative

to the baseline model, but we now attribute part of this variance to κ. The three parameters

µα, σ
2
α, and λα characterizing the EMG distribution for α are therefore recalibrated so that

(i) the variance of (discretized) α is equal to that in the baseline model minus σ2
κ, (ii)∑

i πi exp(αi) = 1, and (iii) the value of the shape parameter σαλα is the same as that in the

baseline model (i.e., 0.829).9

When the planner can observe a component of productivity, the optimal tax system

explicitly indexes taxes to that component (see, e.g., Weinzierl 2011). In the extreme case

in which productivity is entirely observable, so that logw = κ, the optimal system simply

imposes a κ-specific lump-sum tax for each different value for κ. More generally, each different

κ type faces a type-specific income tax schedule T (y;κ).

Table A6 describes optimal type-contingent tax functions and the associated outcomes.

The subscripts H and L correspond to tax schedule parameters for the κHigh and κLow types,

respectively. We find that if the planner can condition taxes on the observable component

of labor productivity, it can generate large welfare gains relative to the current tax system,

which does not discriminate by type. The maximum (Mirrlees) welfare gain is now 6.18 per-

cent of consumption, compared with 2.07 percent in the baseline analysis. This large welfare

gain arises in part because the average effective marginal tax rate drops to 42 percent, which

9The shape parameter controls the relative importance of the normal and exponential distribution com-
ponents.
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Table A6: Type-Contingent Taxes

Tax System Outcomes

T ′ (%) Tr ($) Tr
Y (%) ω (%) ∆Y (%)

HSVUS λ : 0.834 τ : 0.181
9.6

23.9

1, 443

1, 901

1.9

2.5
— —

HSV∗
λL : 1.067

λH : 0.596

τL : 0.481

τH : 0.075

9.0

32.7

11, 181

−1, 424

14.8

−1.9
5.85 −2.09

Affine
τL0 : −0.402

τH0 : −0.034

τL1 : 0.346

τH1 : 0.453

10.2

32.0

31, 986

858

42.1

1.1
5.79 −1.84

Mirrlees
10.0

31.9

28, 068

681

37.0

0.9
6.18 −1.84

Note: See the notes to table 2.

translates into a smaller output loss. Recall that if productivity were entirely observable,

the planner could implement the first best, with a zero marginal rate for all households.

By implementing type-contingent tax systems, the Ramsey planner achieves welfare gains

that nearly match those under the Mirrlees planner. Under an affine system, the high κ type

faces a double whammy, paying higher marginal tax rates than the low type (τH1 > τL1 ) and

paying lump-sum taxes rather than receiving transfers (τH0 > 0 > τL0 ). Higher marginal rates

are an effective way for the planner to redistribute from the high to the low type (recall that

κ enters the level wage multiplicatively), whereas the wealth effect associated with lump-sum

taxes ensures that high κ households still work relatively hard.

One important caveat to this analysis is that we have treated all the variation in κ

as exogenous and have therefore ignored potential feedback from the tax system to the

distribution for κ. However, an education-dependent tax system would likely affect agents’

educational decisions (see, e.g., Heathcote et al. 2017). In particular, relatively high taxation

of high κ households would discourage education investment. Thus, we regard our 6.18

percent welfare gain as an upper bound on the feasible welfare gains from tagging.
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