
Consider the problem we discussed before

sup
{ct,at+1}

E0
∞P
t=0

βtu(ct)

such that

ct + at+1 = yt + (1 + r)at

at+1 ≥ −φ
ct ≥ 0

a0 given

and where yt ∈ Y = {y1, y2, ..., yN} follows a stochastic process defined
by the transition probability matrix Π. Let us suppose that there is a unique
ergodic distribution over yt associated with Π defined by p∗ = Πp∗. Assume
that p∗ defines the time zero probability distribution over y0.



We can write this problem in the general form outlined by Stokey and Lucas as

sup
{at+1}

E0
∞P
t=0

βtF (at, at+1)

such that

at+1 ∈ Γ(at, yt) = {at+1 ∈ R;−φ ≤ at+1 ≤ yt + (1 + r)at}

where

F (at, yt, at+1) = u(yt + (1 + r)at − at+1)

is the one-period return function.



The Recursive formulation of this problem is

v(a, yi) = max
a0

(
u(c) + β

P
j
Πijv(a

0, yj)

)
subject to

c+ a0 = yi + (1 + r)a

a0 ≥ −φ
c ≥ 0

or, in general form,

v(a, yi) = max
a0∈Γ(a,yi)

(
F (a, yi, a

0) + β
P
j
Πijv(a

0, yj)

)



Recall that in the non-stochastic case we showed that as long as the constraint
set was non-empty, and in the limit lifetime utility was well-defined for any
feasible plan, then

1. (SL Th 4.2) The function v∗ defining the supremum for lifetime utility
in the sequence problem (the ‘true’ problem) for different values for ini-
tial wealth satisfies the corresponding functional equation (the recursive
formulation of the problem)

2. (SL Th 4.3) The converse: If we have a function v that solves the functional
equation and satisfies

lim
n→∞βnv(xn) = 0

where xn could belong to any feasible sequence for x, then v = v∗.



There are a bunch of additional results that we didn’t yet discuss for the
non-stochastic case

3. (SL Th 4.4) Plans that are optimal in the sequence problem satisfy

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1)

4. (SL Th 4.5) If a feasible plan satisfies the equation above, and

lim
t→∞

supβtv∗(x∗t ) ≤ 0

then it is an optimal plan (this extra condition is needed to take care of
examples like the one we talked about before)

These results (3) and (4) together link decisions in the sequential and
recursive problems, while (1) and (2) link lifetime utilities in the two prob-
lems.



Without further assumptions, the optimal decision rule might take the
form of a correspondence rather than a function. Define the optimal policy
correspondence

G∗(x) = {y ∈ Γ(x) : v∗(x) = F (x, y) + βv∗(y)}

From (3) every optimal plan is generated from G∗, and from (4) any plan
generated from G∗ that satisfies the limit condition is an optimal plan.

To characterize v∗ andG∗ more fully, some extra assumptions are required.
In general the value function will inherit properties we assume about the
return function F.

Define the operator T on the space of continuous bounded functions,
C(X) by

Tf(x) = max
y∈Γ(x)

{F (x, y) + βf(y)}



5. (SL Th 4.6) Suppose that X (the set of possible values for x) is a convex
subset of Rl, and the correspondence Γ : X → X is non-empty, compact
valued and continuous

Suppose F is bounded and β < 1.

Then T has a unique fixed point v ∈ C(X), and the associated policy
correspondence G : X → X defined above is compact-valued and uhc.
From our previous result (2) the unique fixed point v must be the supre-
mum function for the associated sequence problem. Proving this theorem
(5) relies on showing that given the stated assumptions, the Contraction
Mapping Theorem applies.

6. (SL Th 4.7) Suppose that for each y, F (., y) is strictly increasing and that
Γ is monotone in the sense that x ≤ x0 implies Γ(x) ⊆ Γ(x0). Then v is
strictly increasing



7. (SL Th 4.8) Suppose that F is strictly concave, and Γ is convex. Then v
is strictly concave, and G is a unique single-valued function

8. (SL Th 4.11) Suppose that F is continuously differentiable. Then v is
continuously differentiable



All of these results are proved in Stokey and Lucas for a non-stochastic economy.
To study the stochastic economy to the level of rigor in SL would require a heavy
dose of measure theory, which we will skip for now.

Under analogous assumptions to the non-stochastic case, something like the
Principle of Optimality applies. In particular, results analogous to (2) and (4)
apply, so we can be sure that under certain conditions a solution v to the
functional equation is the supremum function for the sequence problem, and
plans generated by the correspondence G associated with the solution v attain
the supremum. So we can still pursue recursive solution techniques.

Then we can procede to make further assumptions and to more tightly charac-
terize v and G exactly as in the non-stochastic case. All of the previous results
will go through pretty much unchanged, as long as the transition function for
the exogenous shocks satisfies something called the Feller property. These re-
sults, analogous to the results for the non-stochastic case above, are laid out
in a series of theorems in chapter 9 of Lucas and Stokey.



1 Non-stochastic version of the model revisited

Let us revisit the non-stochastic version of the model to cover two issues we
skipped over last time

1. The natural borrowing constraint (previously we focussed on φ = 0)

2. Optimal consumption dynamics when β(1 + r) 6= 1 (previously we only
covered β(1 + r) = 1)



2 Non-stochastic version of the model revisited

Impose ct ≥ 0 and iterate the budget constraint forwards

ct ≥ 0⇒ yt + (1 + r)at − at+1 ≥ 0

⇒ at ≥
at+1 − yt

(1 + r)

at ≥
at+2−yt+1
(1+r)

− yt

(1 + r)

at ≥ −
1

(1 + r)

∞X
j=0

yt+j (1 + r)−j = −
∞X
j=1

yt+j−1 (1 + r)−j



The constraint is more naturally expressed as a limit on at+1, so updating one
period gives

at+1 ≥ −
∞P
j=1

yt+j(1 + r)−j

The nice thing about the natural borrowing constraint is that it will never bind
- if it were to bind at some date t, by construction consumption would be zero
at all dates τ ≥ t + 1 (in the stochastic version, consumption would be zero
with positive probability at all future dates).

Given the natural borrowing constraint, the inter-temporal first order condition
(Euler equation) is

u0(ct) = β(1 + r)u0(ct+1)



and the lifetime (Arrow Debreu) budget constraint is

a0(1 + r) +
∞P
t=0

yt

(1 + r)t
=

∞P
t=0

ct

(1 + r)t

a0 +
∞P
t=0

yt

(1 + r)t+1
=

∞P
t=0

ct

(1 + r)t+1

The Euler equation and the lifetime budget constraint completely characterize
the solution.

Call the LHS Y. Suppose (for example)

u(c) =
c1−γ

1− γ

We can now solve for a decision rule for consumption of the form

c = f(Y, r, γ)



We have

c
−γ
t = β(1 + r)c−γt+1

ct+1 = (β(1 + r))
1
γ ct

so

ct = (β(1 + r))
t
γ c0

We see immediately that whether consumption is increasing or declining over
time depends on whether β(1 + r) > 1 or whether β(1 + r) < 1. In the case
β(1 + r) = 1, consumption is constant (we did that case before). The rate
at which consumption increases or declines over time will depend on both the
magnitude of β(1 + r), and on the parameter γ

Why does γ play a role?



We can solve for c0 (and thus for ct) by using the lifetime budget constraint

Suppose, for example, that β(1 + r) = 1. Then

Y =
∞P
t=0

c0
(1 + r)t+1

c0

1− 1
1+r

= (1 + r)Y

c0 = rY

This is a familiar statement of the simplest version of the Permanent Income
Hypothesis

A slightly weaker version of the Permanent Income / Life-Cycle Hypothesis is
that consumption should not respond to predictable changes in income (even



if it is not constant). This version of the PILCH relies only on ruling out the
possibility of binding borrowing constraints (and does not rely on any specific
assumptions on β, r or γ).


