Use It Or Lose It: Efficiency Gains from Wealth Taxation

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

University of St. Gallen, December 5th 2019

Taxing Capital

- Question: How does taxing capital income flow differ from taxing capital stock?
 - **Capital income tax:** $a_{after-tax} = a + (1 \tau_k) \cdot r \cdot a$
 - Wealth tax: $a_{\text{after-tax}} = (1 \tau_a) \cdot a + (1 \tau_a) \cdot r \cdot a$
- ▶ **Standard Answer:** The two taxes are equivalent with $\tau_a = \frac{r}{1+r}\tau_k \dots$
 - Holds assuming *r* is the same for all individuals.

This Paper: Take heterogeneity in r seriously and compare forms of capital taxation.

► Short Answer: The two taxes have very different—even opposite—implications.

Simple Example

- ► One-period model.
- Government taxes to finance G =\$50. Tax collected end of period.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- ► Key heterogeneity: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ net return.
 - (Mike) High ability: earns $r_m = 20\%$ net return.

	Capital iı	ncome tax	Wealt	:h tax	
	$a_{ m after-tax} = a$	$1+(1- au_k)$ ra	$m{a}_{ ext{after-tax}} = (1 - au_a)m{a} + (1 - au_a)m{ra}$		
	Fredo $(r_f = 0\%)$ Mike $(r_m = 20\%)$		Fredo (<i>r_f</i> = 0%)	Mike (<i>r_m</i> = 20%)	
Wealth	1000	1000	1000	1000	
Before-tax Income	0 200		0	200	
	$ au_{k} = 25\%$	$6 \left(=\frac{50}{200}\right)$	$ au_{a} = 2.27\% \left(= rac{50}{2200} ight)$		
Tax liability	0	50	$22.7 (= 1000 \tau_a)$	$27.3 (= 1200 \tau_a)$	
After-tax return	0%	$15\% \left(=\frac{200-50}{1000}\right)$	$-2.3\% \left(\approx \frac{0-22.7}{1000} \right)$	$17.3\% \left(\approx \frac{200-27}{1000}\right)$	
After-tax $\frac{W_m}{W_f}$	1.15 (=	1150/1000)	$1.20(pprox {}^{1173}\!/_{977})$		

Replace capital income tax with wealth tax \rightarrow Increases dispersion in after-tax returns.

Potential consequences:

- ► Positive (+): Efficiency gain
 - 1. <u>Use it or lose it</u> (static): Capital is reallocated to more productive agents.
 - 2. <u>Behavioral savings response</u> (dynamic): further reallocation to more productive agents.
- ► Negative (-): Higher wealth inequality...

but <u>ambiguous effect</u> on consumption inequality when wage income present.

Conjecture: Positive effects will be first order and negative effects will be second order.

This Paper

We study optimal taxation of wealth in a quantitative framework:

- OLG heterogeneous agents model
- ► Financial frictions: collateral constraints
- Generates:
 - 1. Pareto tail & extreme concentration of wealth,
 - 2. Very fast wealth growth for super rich (1/2 of US billionaires are self made)

building on power law models of inequality (Benhabib-Bisin-et al, 201X; Gabaix et al, 2016)

Key ingredient: persistent heterogeneity in rates of return

 Recent work finds evidence of such heterogeneity: Norway: Fagereng, Guiso, Malacrino, Pistaferri (2019); US: Smith, Yagan, Zidar, Zwick (2019). When investors differ in their rates of return:

- 1. Capital income taxes are much more distorting than what we believed to be.
- 2. Switching to a wealth tax raises productivity, output, wages, and welfare.
- 3. In our quantitative simulations, it also reduces consumption inequality.
 - Hence, it's a policy with no equity-efficiency trade-off.
- 4. Gains come from reallocation, not accumulation.
 - Hence, transition path isn't painful as with capital income taxes.

Outline

1. Model

- 2. Parameterization
- 3. Quantitative Results
 - 3.1 Tax reform
 - 3.2 Optimal taxation
- 4. Robustness
- 5. Conclusions and Current Work

Households

- ► OLG demographic structure.
- ► Uncertain lifetimes: individuals face mortality risk every period.
- Accidental bequests are inherited by (newborn) offspring.

Individuals:

- ► Have preferences over consumption and leisure
- ► Make three decisions:

consumption-savings || labor supply || entrepreneurial activity

Two exogenous characteristics:

y_{ih} (labor market productivity) || z_{ih} (entrepreneurial productivity)

1. Labor Market Productivity y_{ih}

► Labor market efficiency of household *i* at age *h* is

$$\log y_{ih} = \underbrace{\kappa_h}_{\text{life cycle}} + \underbrace{\theta_i}_{\text{permanent}} + \underbrace{\eta_{ih}}_{\text{AR(1)}}$$

• Permanent component θ_i is <u>imperfectly inherited</u> from parents:

$$heta_{i}^{child} =
ho_{ heta} heta_{i}^{parent} + arepsilon_{ heta}$$

► Individual *i* produces *x*_{*ih*} units of intermediate good *i* using capital *k*_{*ih*}:

 $x_{ih} = \mathbf{z}_{ih} k_{ih},$

- Each individual is a monopolist in her variety of intermediate good.
- **z**_{ih} has a permanent and a stochastic component:

$$\mathbf{z_{ih}} = f(\underbrace{z_i^p}, \underbrace{\mathbb{I}_{ih}})$$

perm. comp. stoch. comp.

• Permanent component z_i^p is <u>imperfectly inherited</u> from parents:

$$\log(\boldsymbol{z}_{child}^{p}) = \rho_{z} \log(\boldsymbol{z}_{parent}^{p}) + \varepsilon_{z}.$$

Entrepreneurial Productivity *z_{ih}*: Dynamics

 \mathbb{I}_{ih} can take on three values: $\mathbb{I}_{ih} \in \{H, L, \mathbf{0}\}$:

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih}) = \begin{cases} \left(z_i^p\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = H \\ z_i^p & \text{if } \mathbb{I}_{ih} = L \\ z_{min} & \text{if } \mathbb{I}_{ih} = \mathbf{0} \end{cases}$$

where λ is degree of superstar productivity.

Transition matrix:

$$\Pi_{\mathbf{Z}^{\mathsf{S}}} = \begin{bmatrix} 1 - \mathbf{p}_1 - \mathbf{p}_2 & \mathbf{p}_1 & \mathbf{p}_2 \\ 0 & 1 - \mathbf{p}_2 & \mathbf{p}_2 \\ 0 & 0 & 1 \end{bmatrix}$$

- $p_1 = \Pr \{ \text{losing superstar productivity} \}.$
- ▶ $p_2 = \Pr \{ \text{losing all productivity} \} \rightarrow \text{become a passive saver.}$

Final good production combines efficiency adjusted capital and labor: $Y = Q^{\alpha}L^{1-\alpha}$

Efficiency-adjusted aggregate capital:

$$\mathbf{Q} = \left(\int (\mathbf{x}_{ih})^{\mu} \operatorname{didh}\right)^{1/\mu}, \ \mu < 1$$

- Defines demand curve for individual entrepreneurs
- Aggregate labor supply (labor used by aggregate firm, not to produce x_{ih}):

$$L = \int (y_{ih}\ell_{ih}) didh$$

Bond Market:

- ► Individuals can lend and borrow (subject to collateral constraints).
- Bonds in zero net supply \rightarrow Interest rate *r* determined in equilibrium.

Entrepreneur's Problem

► Without taxes, entrepreneur's (static!) capital choice:

$$\pi^{\star}(a, z) = \max_{k \leq \vartheta(z) \cdot a} \left\{ \mathcal{R} \cdot (z \cdot k)^{\mu} - (r + \delta) k \right\}$$

• Collateral constraints: Borrowing capacity is nondecreasing in ability $d\vartheta (z)/dz \ge 0$

After-tax wealth:

$$\Pi(\boldsymbol{a},\boldsymbol{z};\boldsymbol{\tau}) = \begin{cases} \boldsymbol{a} + [\boldsymbol{r}\boldsymbol{a} + \pi^{\star}(\boldsymbol{a},\boldsymbol{z})] \times (1 - \tau_{\boldsymbol{k}}) \\ [(1 + \boldsymbol{r}) \boldsymbol{a} + \pi^{\star}(\boldsymbol{a},\boldsymbol{z})] \times (1 - \tau_{\boldsymbol{a}}) \end{cases}$$

Individuals:

During working life:

$$(1 + \tau_{\mathbf{c}}) \cdot \mathbf{c}_{ih} + \mathbf{a}'_{ih} = \Pi\left(\mathbf{a}_{ih}, \mathbf{z}_{ih}; \tau\right) + (1 - \tau_{\ell}) \cdot (\mathbf{w}\mathbf{y}_{ih}\ell_{ih}) \qquad \text{and} \quad \mathbf{a}'_{ih} \ge 0$$

During retirement labor income replaced with <u>SS pension</u>

Government budget balances:

- ► **Outlays:** Expenditure (G) + Social Security pensions
- **Revenues:** tax on consumption (τ_c) , labor income (τ_ℓ) , plus:
 - 1. tax on capital income (τ_k) , or
 - 2. tax on wealth (τ_a) .

1. Model

2. Parameterization

- 3. Quantitative Results
 - 3.1 Tax reform
 - 3.2 Optimal taxation
- 4. Robustness
- 5. Conclusions and Current Work

Parameterization

► Preferences:

$$u(\mathbf{c},\ell) = \frac{\left(\mathbf{c}^{\gamma}\ell^{1-\gamma}\right)^{1-\sigma}}{1-\sigma}$$

► Dynamics of *z_{ih}*: Match fast wealth growth of super wealthy

■ Percentage of self-made in Forbes 400 (54%, we get 50%)

• We set:
$$\lambda = 5$$
, $p_1 = 0.05$, and $p_2 = 0.03$.

$$\Pi_{z^s} = \begin{bmatrix} 0.92 & 0.05 & 0.03 \\ 0 & 0.97 & 0.03 \\ 0 & 0 & 1 \end{bmatrix}$$

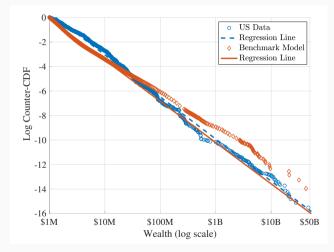
B Robustness analysis with constant productivity: $\lambda = 1$, $p_1 = 0$, and $p_2 = 0$.

examples

Parameter		Value
Curvature of utility	σ	4.0
Curvature of CES aggregator of varieties	$\boldsymbol{\mu}$	0.90
Capital share in production	α	0.40
Depreciation rate of capital	δ	0.05
Interg. persistence of invest. ability	$ ho_{Z^P}$	0.10
Interg. persistence of labor efficiency	$ ho_{ heta}$	0.50
Persistence of labor efficiency shock	$ ho_\eta$	0.90
Std. dev. of labor efficiency shock	$\sigma_{arepsilon_\eta}$	0.20

 $au_{k}=25\%, au_{\ell}=22.4\%$, and $au_{c}=7.5\%$ (McDaniel, 2007)

Calibration Targets and Outcomes


We calibrate 4 remaining parameters $(\beta, \gamma, \sigma_{\varepsilon_{z^p}}, \sigma_{\varepsilon_{\theta}})$ to match 4 data moments:

Parameter		Value	Moment	Data	Model
Discount factor	β	0.948	Capital/ _{GDP}	3.00	3.00
Cons. share in U	γ	0.46	Avg. Hours	0.40	0.40
σ of entrep. ability	$\sigma_{\varepsilon_{z^p}}$	0.072	Top 1% share	0.36	0.36
σ of labor fix. eff.	$\sigma_{\varepsilon_{\theta}}$	0.305	$\sigma(\log(\text{Labor Earnings}))$	0.80	0.80

Untargeted moments:

Moment	Data	Model
total tax revenue/GDP	24.8%	25%
capital tax revenue/total tax revenue	28%	25%
corporate debt/ _{GDP}	126%	129%
Bequest/Wealth	1-2%	1.0%

$\mu = 0.9$ and Pareto Tail

1. Model

2. Parametrization

3. Quantitative Results

- 3.1 Tax reform
- 3.2 Optimal taxation
- 4. Robustness
- 5. Conclusions and Current Work

- 1. **Tax Reform:** Replace τ_k with τ_a so as to
 - (a) keep government revenue constant (RN), or
 - (b) keep government budget balanced (BB).
- 2. **Optimal Taxation:** Government maximizes utilitarian social welfare choosing:
 - (a) <u>linear</u> labor income (τ_{ℓ}) and capital income taxes (τ_{k}) , or
 - (b) <u>linear</u> labor income (τ_{ℓ}) and wealth taxes (τ_a) ,

keeping government revenue constant.

Revenue Neutral Tax Reform

	Benchmark	Wealth Tax
τ_k	25.0%	0.00
$ au_a$	0.00	1.13%
	Variable	% Change
	К	19.4
	Q	24.8
	L	1.3
	Y	10.1
	W	8.7
	С	10.0

Change in the share of individuals in Top x% of wealth holders by productivity type

	Entrepreneurial Productivity Groups (z ^p Percentiles)							
Тор х%	0-40	40-80	80-90	90-99	99-99.9	99.9+		
1	-12.0	-13.0	-10.8	10.5	11.2	9.4		
5	-8.2	-3.3	1.6	8.3	8.9	7.9		
10	-6.4	-1.3	2.9	6.4	6.9	6.2		
50	-2.5	0.9	1.8	1.6	1.2	1.1		

Decomposing change in wealth: Three channels

- ► Use-it-or-lose-it: Change in taxes, prices and policy rules fixed
- ► **GE (price) effects**: Change in taxes and prices, policy rules fixed
- ▶ Behavioral response: Change in policy rules in response to taxes and prices

	$\Delta \log K$	Contrib. by z ^p pctiles			% Chan	% Change in wealth share		
Due to:		0-90	90-99	99+	0-90	90-99	99+	
A. Use-it-or-lose-it	14.5	3.8	4.4	<mark>6.3</mark>	-5.7	1.6	4.0	
B. GE (price) effects	-13.1	-8.2	-3.2	-1.7	0.0	-0.7	0.6	
C. Behavioral response	16.3	8.7	2.9	4.8	-1.4	-0.2	1.7	
Total Effect (A+B+C)	17.7	4.3	4.0	9.4	-7.1	0.7	6.4	

Micro measure ($CE_1(s)$):

- Individual-specific consumption-equivalent in the US benchmark that gives the same lifetime utility as in tax reform economy
- \overline{CE}_1 : average of CE_1 (s) over the population.

Macro measure $\left(\overline{CE}_{2}\right)$:

Economy-wide consumption-equivalent that gives same expected lifetime utility as in tax reform economy

	RN	BB
Average welfare difference:		
\overline{CE}_1	7.40%	5.58%
\overline{CE}_2	7.86%	4.71%
% with welfare gain	67.8%	94.8%

Note: The welfare figures report the percentage gain in consumption-equivalent terms from each tax reform relative to the current US benchmark economy.

	RN	BB
Average welfare difference:		
\overline{CE}_1	7.40%	5.58%

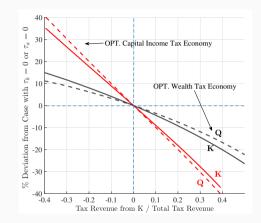
	Productivity group (Percentile)								
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+			
20	7.0	7.3	7.9	8.9	10.6	11.7			
21-34	6.5	6.3	6.3	6.6	7.0	6.9			
35-49	5.1	4.4	3.9	3.3	1.7	0.4			
50-64	2.3	1.8	1.4	0.8	-0.6	-1.7			
65+	-0.2	-0.3	-0.4	-0.6	-1.2	-1.7			

Note: Each cell reports the average of $CE_1(\theta, z, a, h) \times 100$ within each age and productivity group

Two Optimal Taxation Problems

The government maximizes ex ante (expected) lifetime utility of newborns by choosing

- 1. Linear labor income (τ_{ℓ}) and capital income taxes $(\tau_{\mathbf{k}})$, or
- 2. Linear labor income (τ_{ℓ}) and wealth taxes (τ_{a})


keeping government revenue constant.

• Exercise equivalent to maximizing \overline{CE}_2

	$ au_k$	$ au_\ell$	$ au_a$	\overline{k}/Y	Top 1%
Benchmark	25%	22.4%	-	3.0	0.36
Tax reform	-	22.4%	1.13%	3.25	0.46
Opt. $ au_k$	-34.4%	36.0%	-	4.04	0.56
Opt. $ au_a$	-	14.1%	3.06%	2.90	0.47
Opt. τ_a w/ threshold	-	14.2%	3.30%	2.86	0.47

Note: All experiments are revenue neutral. Threshold is 25% of av. earnings and exempts 37% of population.

Wealth Taxes – Distortions and Misallocation

- 1. Wealth tax reduces Q and K less than capital income tax.
- 2. *Q* declines less than *K* under wealth taxes. <u>Opposite</u> under capital income taxes.

	ΔK	ΔQ	ΔL	$\Delta \mathbf{Y}$	Δw	Δw	Δr	Δr
% change						(net)		(net)
Tax reform	19.4	24.8	1.3	10.1	8.7	8.7	-0.25	-0.90
Optimal $ au_k$	69.0	79.8	-1.2	25.5	27.0	4.7	-1.51	-0.87
Optimal $ au_a$	2.8	10.3	3.9	6.4	2.4	13.4	0.68	-1.92
Opt. τ_a + Threshold	0.41	8.1	3.7	5.4	1.70	12.5	0.78	-2.07

	$ au_{k}$	$ au_\ell$	$ au_a$	$\overline{\textit{CE}}_2$
				(%)
Benchmark	25%	22.4%	-	-
Tax reform	-	22.4%	1.13%	7.86
Optimal $ au_k$	-34.4%	36.0%	-	6.28
Optimal $ au_a$	-	14.1%	3.06%	9.61
Opt. τ_a + Threshold	_	14.2%	3.30%	9.83

	Tax Reform	$Opt.\tau_k$	Opt. τ_a	
CE_2 (NB)	7.86	6.28	9.61	
	Consumption			
Total	8.27	5.90	11.02	
Level	10.01	21.04	8.28	
Dist.	-1.58	-12.51	2.53	
	Leisure			
Total	-0.38	0.36	-1.27	
Level	-0.66	0.73	-2.21	
Dist.	0.27	-0.38	0.76	

Extension: Transition

Optimal Tax Equilibrium with Transition

- Fix optimal capital tax level (τ_k or τ_a) and solve transition to new steady state
- Adjust labor income tax (τ_{ℓ}) to finance Gov. debt from deficits during transitions

	OCIT	OWT
$ au_{k}$	-34.38*	0.00
$ au_a$	0.00	3.06*
$ au_\ell$	37.41	15.40
$\overline{\textit{CE}}_2$ (newborn)	-5.30 (6.28)	7.71 (9.61)
$\overline{\textit{CE}}_2$ (all)	-3.86 (3.90)	4.65 (4.79)

Outline

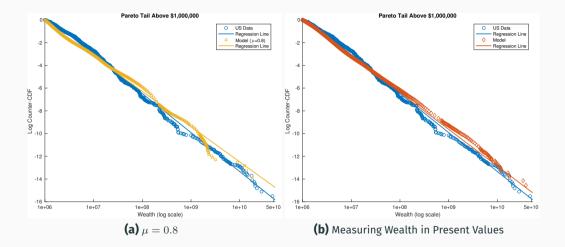
- 1. Model
- 2. Parametrization
- 3. Quantitative Results
 - 3.1 Tax reform
 - 3.2 Optimal taxation
- 4. Robustness
- 5. Conclusions and Current Work

- Many countries currently have or have had wealth taxes:
 - France, Spain, Norway, Switzerland, Italy, Denmark, Germany, Finland, Sweden, Colombia, among others.
- ► However, the rationale for wealth taxes are often vague:
 - fairness, reducing inequality, etc...
 - and not studied formally
- Here, we are proposing a case for wealth taxes based on efficiency (and distributional benefits) and quantitatively evaluating its impact.

Tax reform from τ_k **to** τ_a **:** Substantial welfare gains

- Gives the right incentives to the right people to save
- Increases output, consumption, and wages

Optimal taxes: Welfare gain substantially larger under wealth taxes


- Capital income taxes (τ_k) : <u>negative</u> or small, gains go away with transition
- Wealth taxes (τ_a): <u>positive</u> and large, act through <u>reallocation not accumulation</u>

- 1. Add optimal consumption taxes.
- 2. Are global wealth taxes necessary?
 - More productive agents prefer wealth tax over capital income tax
- 3. Alternative modeling of entrepreneur's labor input
 - How much of the return to entrepreneurship comes from human capital?

Thanks!

Appendix

Pareto Tail with Modified Models

	Percentiles of Return Distribution (%)				
	P10	P50	P90	P95	P99
		В	efore Tax		
Benchmark	2.00	2.00	17.28	22.35	42.36
Wealth tax	1.74	1.74	14.62	19.04	36.91
			After Tax		
Benchmark	1.50	1.50	12.96	16.76	31.77
Wealth tax	0.59	0.59	13.32	17.69	35.35

Wealth Concentration by Assets

	Stocks	All stocks	Non-equity	Housing	Net Worth	
	w/o pensions		financial	equity		
Top 0.5%	41.4	37.0	24.2	10.2	25.6	
Тор 1%	53.2	47.7	32.0	14.8	34.0	
Top 10%	91.1	86.1	72.1	51.7	68.7	
Bottom 90%	8.9	13.9	27.9	49.3	31.3	
		Gini Coefficients				
		Financ	Net Worth			
		0	0.82			

Table 1: Wealth Concentration by Asset Type

Evolution of Net Worth Among Forbes 400

../../2016/UBC_SF/Forbes_figures/F400_age.eps

Back

	Calendar Year				
Name	80s	90s	00s	10s	
Warren Buffett	44.37	18.57	0.02	5.81	
Michael Dell		87.94	-5.58	2.97	
Larry Ellison	54.09	31.31	4.90	8.06	
Bill Gates	51.94	48.06	-7.54	5.46	
Elon Musk				107.57	
Larry Page			69.67	11.96	
Mark Zuckerberg			33.81	62.24	

Notation: s state vector $|| V_0$ and \mathbb{V}_0 be lifetime value functions in benchmark (US) and counterfactual economies $|| \Gamma$ be the distribution of s.

Micro measure $(CE_1 (s))$:

► Compute *individual-specific* consumption equivalent welfare and integrate:

$$V_{0}\left(\left(1 + \mathsf{CE}_{1}\left(\mathbf{s}\right)\right) \mathbf{c}_{\mathsf{US}}^{*}\left(\mathbf{s}\right), \ell_{\mathsf{US}}^{*}\left(\mathbf{s}\right)\right) = \mathbb{V}_{0}\left(\mathbf{c}\left(\mathbf{s}\right), \ell\left(\mathbf{s}\right)\right)$$
$$\overline{\mathsf{CE}}_{1} \equiv \sum_{\mathbf{s}} \Gamma_{\mathsf{US}}\left(\mathbf{s}\right) \times \frac{\mathsf{CE}_{1}\left(\mathbf{s}\right)}{\mathsf{S}}$$

Macro measure $\left(\overline{CE}_{2}\right)$:

► Fixed proportional consumption transfer to <u>all Individual</u> all individuals:

$$\sum_{\mathbf{s}} \Gamma_{\mathsf{US}}\left(\mathbf{s}\right) \times V_{0}\left(\left(1 + \overline{\mathsf{CE}}_{2}\right) \mathsf{c}_{\mathsf{US}}^{*}\left(\mathbf{s}\right), \ell_{\mathsf{US}}^{*}\left(\mathbf{s}\right)\right) = \sum_{\mathbf{s}} \Gamma\left(\mathbf{s}\right) \times \mathbb{V}_{0}\left(\mathsf{c}\left(\mathbf{s}\right), \ell\left(\mathbf{s}\right)\right).$$

Welfare Gain Decomposition

Decompose welfare into consumption (CE_C) and leisure gain (CE_L): 1 + $CE = (1 + CE_C)(1 + CE_L)$

• CE_C is given by:

$$V_0((1 + CE_{\mathsf{C}}(\mathbf{s}))\mathbf{c}^*_{\mathsf{US}}(\mathbf{s}), \ell^*_{\mathsf{US}}(\mathbf{s})) = \widetilde{\mathbb{V}}_0(\mathbf{c}(\mathbf{s}), \ell^*_{\mathsf{US}}(\mathbf{s}))$$

CE_C can be decomposed into level $(CE_{\overline{c}})$ and distribution (CE_{σ_c})

 $V_0((1 + CE_{\overline{c}}(\mathbf{s}))c_{US}^*(\mathbf{s}), \ell_{US}^*(\mathbf{s})) = \widehat{\mathbb{V}}_0(\widehat{c}(\mathbf{s}), \ell_{US}^*(\mathbf{s}))$ where $\widehat{c}(\mathbf{s}) = c(\mathbf{s})\frac{\overline{c}}{\overline{c}_{US}^*}$ and $\widehat{\mathbb{V}}_0\left((1 + CE_{\sigma_c})\widehat{c}(\mathbf{s}), \ell_{US}^*(\mathbf{s})\right) = \widetilde{\mathbb{V}}_0(c(\mathbf{s}), \ell_{US}^*(\mathbf{s}))$

• CE_L is given by

$$V_0((1 + CE_{\mathsf{L}}(\mathbf{s}))c^*_{\mathsf{US}}(\mathbf{s}), \ell^*_{\mathsf{US}}(\mathbf{s})) = \widetilde{\mathbb{V}}_0(c^*_{\mathsf{US}}(\mathbf{s}), \ell(\mathbf{s}))$$

Similar decomposition applies to leisure.

	Productivity group (Percentile)						
Age	0-40	40-80	80-90	90-99	99-99.9	99.9-99.99	99.99+
20	95.4	98.6	99.3	99.6	99.8	99.8	100.0
21-34	96.3	97.7	97.7	97.3	96.0	94.9	92.3
35-49	91.7	92.8	91.1	87.8	80.3	74.5	63.7
50-64	74.2	76.2	73.8	69.4	60.3	53.8	43.8
65+	13.8	18.6	18.7	18.2	16.6	15.2	13.0

Note: Each cell reports the share of agents in each category (age - productivity) with positive welfare gain $(CE_1(\theta, z, a, h) > 0)$.

	Productivity group (Percentile)						
Age	0-40	40-80	80-90	90-99	99-99.9	99.9-99.99	99.99+
20	94.5	93.1	93.3	94.6	95.8	96.1	95.8
21-34	95.7	92.6	90.5	88.8	84.2	79.4	67.0
35-49	91.3	82.8	76.5	68.2	53.6	44.6	34.0
50-64	72.6	62.9	56.1	49.4	39.8	34.5	27.2
65+	2.1	2.3	1.8	1.4	0.9	0.7	0.4

Note: Each cell reports the share of agents in each category (age - productivity) with positive welfare gain $(CE_1(\theta, z, a, h) > 0)$.

Political Support for Wealth Taxes with <u>Threshold</u>

	Productivity group (Percentile)						
Age	0-40	40-80	80-90	90-99	99-99.9	99.9-99.99	99.99+
20	94.5	93.1	93.3	94.6	95.8	95.9	96.0
21-34	95.6	92.4	90.4	88.5	83.8	77.6	78.9
35-49	91.1	82.4	76.0	67.8	53.2	43.3	44.3
50-64	76.4	66.7	59.6	52.5	42.3	35.8	36.6
65+	75.9	68.6	63.7	57.9	48.7	42.1	42.9

Note: Each cell reports the share of agents in each category (age - productivity) with positive welfare gain $(CE_1(\theta, z, a, h) > 0)$.

How Much Inequality in Aiyagari-Style Models?

Parametrization	U.S. Data :	$\begin{tabular}{c} $Gaussian$ \\ \hline $\rho = 0.985, \sigma^2 = 0.0234$ \\ \hline \end{tabular}$	GKOS benchmark Rich process
Gini Top 0.1%	0.85 14.8%	0.58 1.1%	0.66 2.2%
Frac > \$10M	0.4-0.5%	≈ 0	0.02%
Тор 1%	35.5%	7.0%	9.2%
Top 10%	75.0%	37.9%	41.6%
Top 20%	87.0%	48.2%	52.8%

Return Heterogeneity in Norway

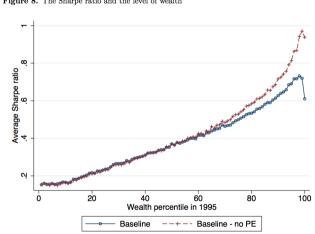


Figure 8. The Sharpe ratio and the level of wealth

Source: Fagereng, Guiso, Malacrino, and Pistaferri (2016)