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This class

e Dynamic programming applications, part three

e Consumption-savings problems

— review of linear-quadratic permanent income theory

— effects of income uncertainty in more general settings



Review of permanent income theory

Timet=0,1,2,...

Single agent with risk averse preferences

E{Zﬂtu(ct)}, 0<pB<1
t=0

Flow budget constraint
at+1 = R(ay +y: — ¢)

given some stochastic process for income

Consumption Euler equation

u'(cp) = 5RIE,5{ ct+1}



Hall (1978)

e Strict version of the permanent income hypothesis (PIH)

— quadratic utility

b
u(c)zc—icz, b>0

— interest rate equals rate of time preference
BR =1
e Then consumption Euler equation simply implies
Ct — Et{ Ct+1 }

e Implies consumption is a martingale (e.g., a random walk).
More generally, marginal utility is a martingale



Iterating forward

e At t =0 we have

a1 = R(ao + yo — o)
e At t =1 we have

ag = R(ay +y1 — c1) = R*(ao + yo — co) + R(y1 — 1)
o At t =2 we have

asz = RS(CLO + Yo — ¢o) + Rz(yl —c1) + R(y2 — ¢2)



Iterating forward

e [terating this out to some arbitrary date T°

T
ary1 = R ag + Z RTH_t(yt — )
t=0
e Dividing both sides by R’ *! and rearranging
T T
Z R™'c; + R_(T+1)GT+1 = agp + Z Ry
t=0 t=0

e Taking T' — oo and imposing the no-Ponzi-scheme constraint

oo oo
Z R7tc; = ag + Z R_tyt
t=0 t=0



Intertemporal budget constraint

e Nothing special about period ¢ = 0 so write this as

0. @) 0. @) .
Z R77¢cij=as + Z Ry
j=0 7=0

e Also holds in expectation

) )

E < ZR_JCH] > = ay + [y S ZR_Jyt—I—] ’
\j =0 \] =0




Solving for consumption

e Interchanging the sum and expectations

e But from the consumption Euler equation and the law of iterated
expectations

Et {ct+} = for all j



Solving for consumption

e This gives the solution

Ct —

o
at+ZR_j]Et{yt+j} 7 R=1+r

147 s

e [t is customary to refer to a; as ‘financial wealth; and to define
‘human wealth’ h; by

he = R7B; {ys}
j=0

e Consumption out of total wealth (i.e., ‘permanent income’) is

.
cp = th: (1 — B)wy Wy = ay + hy




Certainty equivalence

Solution exhibits certainty equivalence. Optimal ¢; policy depends
only on expected y;4;

Higher moments do not matter. In particular, income risk
(volatility of yi1;) does not matter for optimal ¢

This is a because of the linear-quadratic specification

Volatility of y;4; matters for payoffs — agent is risk averse — but
with quadratic utility volatility doesn’t matter for optimal policy
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Consumption dynamics

e Change in consumption

r
1+7r

Aci=ct—ci1 = — B q{c} = (wy — E¢—1{w})

driven purely by innovations to permanent income

e Since a; = E;_1{a;}, these innovations are given by

we — Er—1{wi } = Z R (B —Ee—1) {ye451
j=0

so that

r

ACt:
147

> R (B — Eeor) {yer5}

j=0

e In short, changes in consumption are proportional to revisions in
expected income due to the arrival of new information
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Permanent and transitory shocks

e Example: suppose income has a permanent component z; and a
transitory component u; as in

Yt = 2t + Uy

2t = Zt—1 T Et

where the shocks u; and e; are IID over time, independent of each
other, and have mean zero

e What are the revisions (E; — E;_1) {y¢+;} for this process?
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Revisions to expected income

e For 5 =0 we have

(Et —Ei—1){ye} = (Er —Ei—1) (ye—1 + ug — ug—1 + €¢)

= Ut + E¢

e For j =1 we have

(Et —Ei—1) {ye+1} = (B —Ey—1) (y¢ + w1 — ug + €¢41)
=ur + et + (Bt —Ei—1) (w1 — ue + €441)
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Revisions to expected income
e Continuing in the same way
(Bt —Et1) {9145} =e¢  forany j >1

e Hence for this example

o
r .
_ —J _ .
Ac; = T, E R7(E: —E¢—1){yt+4}
7=0
r oo
— R J
11 ut—|—€t—|—jE:1 Et
r oo
— E R
147 Ut pard ot
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Response to permanent and transitory shocks

e This simplifies to

r
1+7r

ACt = &t + Ut

e In this example, consumption responds 1-for-1 to permanent
shocks €; but is much less responsive to transitory shocks u;
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Saving motives

e Three basic motives for saving/dissaving

(i) intertemporal substitution — [ vs R, operates even if y; is
deterministic

(ii) consumption smoothing — desire to smooth consumption over
different income shocks, operates even if utility is quadratic

(iii) precautionary saving — insurance against future income risk, need
to go beyond certainty equivalence
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Precautionary saving
Two period example

Single agent with risk averse preferences

u(co) + PE{ u(cr) }
Budget constraints
co + a1 = Yo, and ¢ = Ray + 1

Stochastic income y; ~ F(y1)

Choose a1 to maximize

w(yo —ay1) = 5/ u(Ray + y1) dF(y1)
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Precautionary saving example

Suppose SR = 1, no intertemporal substitution motive

Consumption Euler equation

u'(yo — ar) = / u'(Ray + y1) dF (y1)

Since u”(¢) < 0, LHS strictly increasing in a; and RHS strictly
decreasing in aq

Pins down a; and hence ¢y = yg — a1
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Income risk

How does saving a; respond to greater income risk?

Consider mean-preserving spread. Write y1 = 91 + € with mean 1,
and mean zero risk € ~ G(¢)

Now write consumption Euler equation
u' (yo —ay) = / v (Ray + 71 + €) dG(¢)

If marginal utility is conver, i.e., if u"”(c) > 0, then by Jensen’s
inequality we have

/ v (Ray + i1 + ) dG(e) > v/ (Ray + 1)

So if marginal utility is convex, income risk leads to more saving
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Prudence

e Risk aversion refers to curvature of utility function u(c).
‘Prudence’ refers to curvature of marginal utility function «/(c)

e CRRA utility function

u(c) = : a >0
Risk aversion u”(¢) < 0 and prudence u"'(¢) > 0

e (Quadratic utility function

b
u(c):c—§c2, b>0

Risk aversion u”(¢) < 0 but no prudence u"'(c) = 0
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Dynamic version

Finite periods t = 0,1, ..., T
Budget constraints

ct + a1 = Ray + 44

IID income shocks y; ~ F'(y;)

Bellman equation

Vila,y) =max [u(Ra+y—a)+ 8 [ Vies (@' )aF(y)]

Finite horizon will let us do backwards induction from ¢ = 1" given

that ary1 = 0 so that

Vr(a,y) = u(Ra +y)
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Define ‘cash-on-hand’

ry = Ray + 4t

Evolves according to

Lt41 = Rat—l—l + Y1 = R(ZCt — Ct) + Yt+1

Cash-on-hand

Terminal condition can be written

So Vr(x) inherits all properties of u(x) and hence exhibits

prudence if u(x) does
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Backwards induction

e Then for one period earlier

VT—1(9U):mCaX +5/ (x —c) +y)dF(y )}

since Vp(z') = u(2’) and 2’ = R(x — ¢) + ¢/

o If u"'(¢) > 0 mean-preserving spread will decrease optimal c,
saving increases as insurance against more income risk

e Note Vpr_i(z) is sum of concave functions hence concave and by
envelope theorem

Vi (@) = BR® [ W"(R(a o) + )P () > 0
Again, value function inherits key properties of utility function
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Backwards induction

One period even earlier

Vir_o(x) = max [u(c) + 3 / Vr_1(R(x — ¢) + y’)dF(y’)}
Note Vr_s(x) is sum of concave functions hence concave and again
Vi o(a) = B [ Vi (R(o — o) +9)dF(y) > 0
Iterate all the way back to

Volzx) = max [u(c) + 5 / Vi(R(x —c) + y’)dF(y’)}

At each step of iteration Vi(x) is concave and exhibits prudence
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