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This class

• Dynamic programming applications, part three

• Consumption-savings problems

– review of linear-quadratic permanent income theory

– effects of income uncertainty in more general settings
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Review of permanent income theory

• Time t = 0, 1, 2, . . .

• Single agent with risk averse preferences

E
( 1X

t=0

�t u(ct)

)
, 0 < � < 1

• Flow budget constraint

at+1 = R(at + yt � ct)

given some stochastic process for income yt

• Consumption Euler equation

u0(ct) = �REt
�
u0(ct+1)
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Hall (1978)

• Strict version of the permanent income hypothesis (PIH)

– quadratic utility

u(c) = c� b

2
c2, b > 0

– interest rate equals rate of time preference

�R = 1

• Then consumption Euler equation simply implies

ct = Et{ ct+1 }

• Implies consumption is a martingale (e.g., a random walk).
More generally, marginal utility is a martingale
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Iterating forward

• At t = 0 we have

a1 = R(a0 + y0 � c0)

• At t = 1 we have

a2 = R(a1 + y1 � c1) = R2(a0 + y0 � c0) +R(y1 � c1)

• At t = 2 we have

a3 = R3(a0 + y0 � c0) +R2(y1 � c1) +R(y2 � c2)
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Iterating forward

• Iterating this out to some arbitrary date T

aT+1 = RT+1a0 +
TX

t=0

RT+1�t(yt � ct)

• Dividing both sides by RT+1 and rearranging

TX

t=0

R�tct +R�(T+1)aT+1 = a0 +
TX

t=0

R�tyt

• Taking T ! 1 and imposing the no-Ponzi-scheme constraint

1X

t=0

R�tct = a0 +
1X

t=0

R�tyt
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Intertemporal budget constraint

• Nothing special about period t = 0 so write this as

1X

j=0

R�jct+j = at +
1X

j=0

R�jyt+j

• Also holds in expectation

Et

8
<

:

1X

j=0

R�jct+j

9
=

; = at + Et

8
<

:

1X

j=0

R�jyt+j

9
=

;
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Solving for consumption

• Interchanging the sum and expectations

1X

j=0

R�jEt {ct+j} = at +
1X

j=0

R�jEt {yt+j}

• But from the consumption Euler equation and the law of iterated
expectations

Et {ct+j} = ct for all j
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Solving for consumption

• This gives the solution

ct =
r

1 + r

0

@at +
1X

j=0

R�jEt {yt+j}

1

A , R = 1 + r

• It is customary to refer to at as ‘financial wealth; and to define
‘human wealth’ ht by

ht ⌘
1X

j=0

R�jEt {yt+j}

• Consumption out of total wealth (i.e., ‘permanent income’) is

ct =
r

1 + r
wt = (1� �)wt wt ⌘ at + ht
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Certainty equivalence

• Solution exhibits certainty equivalence. Optimal ct policy depends
only on expected yt+j

• Higher moments do not matter. In particular, income risk
(volatility of yt+j) does not matter for optimal ct

• This is a because of the linear-quadratic specification

• Volatility of yt+j matters for payoffs — agent is risk averse — but
with quadratic utility volatility doesn’t matter for optimal policy
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Consumption dynamics

• Change in consumption

�ct ⌘ ct � ct�1 = ct � Et�1{ct} =
r

1 + r
(wt � Et�1{wt})

driven purely by innovations to permanent income

• Since at = Et�1{at}, these innovations are given by

wt � Et�1{wt} =
1X

j=0

R�j (Et � Et�1) {yt+j}

so that

�ct =
r

1 + r

1X

j=0

R�j (Et � Et�1) {yt+j}

• In short, changes in consumption are proportional to revisions in
expected income due to the arrival of new information
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Permanent and transitory shocks

• Example: suppose income has a permanent component zt and a
transitory component ut as in

yt = zt + ut

zt = zt�1 + "t

where the shocks ut and "t are IID over time, independent of each
other, and have mean zero

• What are the revisions (Et � Et�1) {yt+j} for this process?
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Revisions to expected income

• For j = 0 we have

(Et � Et�1) {yt} = (Et � Et�1) (yt�1 + ut � ut�1 + "t)

= ut + "t

• For j = 1 we have

(Et � Et�1) {yt+1} = (Et � Et�1) (yt + ut+1 � ut + "t+1)

= ut + "t + (Et � Et�1) (ut+1 � ut + "t+1)

= "t
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Revisions to expected income

• Continuing in the same way

(Et � Et�1) {yt+j} = "t for any j � 1

• Hence for this example

�ct =
r

1 + r

1X

j=0

R�j (Et � Et�1) {yt+j}

=
r

1 + r

0

@ut + "t +
1X

j=1

R�j"t

1

A

=
r

1 + r

0

@ut +
1X

j=0

R�j"t

1

A
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Response to permanent and transitory shocks

• This simplifies to

�ct = "t +
r

1 + r
ut

• In this example, consumption responds 1-for-1 to permanent
shocks "t but is much less responsive to transitory shocks ut
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Saving motives

• Three basic motives for saving/dissaving

(i) intertemporal substitution — � vs R, operates even if yt is
deterministic

(ii) consumption smoothing — desire to smooth consumption over
different income shocks, operates even if utility is quadratic

(iii) precautionary saving — insurance against future income risk, need
to go beyond certainty equivalence
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Precautionary saving

• Two period example

• Single agent with risk averse preferences

u(c0) + �E{u(c1) }

• Budget constraints

c0 + a1 = y0, and c1 = Ra1 + y1

• Stochastic income y1 ⇠ F (y1)

• Choose a1 to maximize

u(y0 � a1) = �

Z
u(Ra1 + y1) dF (y1)
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Precautionary saving example

• Suppose �R = 1, no intertemporal substitution motive

• Consumption Euler equation

u0(y0 � a1) =

Z
u0(Ra1 + y1) dF (y1)

• Since u00(c) < 0, LHS strictly increasing in a1 and RHS strictly
decreasing in a1

• Pins down a1 and hence c0 = y0 � a1
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Income risk

• How does saving a1 respond to greater income risk?

• Consider mean-preserving spread. Write y1 = ȳ1 + " with mean ȳ1
and mean zero risk " ⇠ G(")

• Now write consumption Euler equation

u0(y0 � a1) =

Z
u0(Ra1 + ȳ1 + ") dG(")

• If marginal utility is convex, i.e., if u000(c) > 0, then by Jensen’s
inequality we have

Z
u0(Ra1 + ȳ1 + ") dG(") > u0(Ra1 + ȳ1)

• So if marginal utility is convex, income risk leads to more saving

19



Prudence

• Risk aversion refers to curvature of utility function u(c).
‘Prudence’ refers to curvature of marginal utility function u0(c)

• CRRA utility function

u(c) =
c1�↵ � 1

1� ↵
, ↵ > 0

Risk aversion u00(c) < 0 and prudence u000(c) > 0

• Quadratic utility function

u(c) = c� b

2
c2, b > 0

Risk aversion u00(c) < 0 but no prudence u000(c) = 0
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Dynamic version

• Finite periods t = 0, 1, ..., T

• Budget constraints

ct + at+1 = Rat + yt

• IID income shocks yt ⇠ F (yt)

• Bellman equation

Vt(a, y) = max
a0

h
u(Ra+ y � a0) + �

Z
Vt+1(a

0, y0)dF (y0)
i

• Finite horizon will let us do backwards induction from t = T given
that aT+1 = 0 so that

VT (a, y) = u(Ra+ y)
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Cash-on-hand

• Define ‘cash-on-hand ’ from RHS of budget constraint

xt ⌘ Rat + yt

• Evolves according to

xt+1 = Rat+1 + yt+1 = R(xt � ct) + yt+1

• Terminal condition can be written

VT (x) = u(x)

• So VT (x) inherits all properties of u(x) and hence exhibits
prudence if u(x) does
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Backwards induction

• Then for one period earlier

VT�1(x) = max
c

h
u(c) + �

Z
u(R(x� c) + y0)dF (y0)

i

since VT (x0) = u(x0) and x0 = R(x� c) + y0

• If u000(c) > 0 mean-preserving spread will decrease optimal c,
saving increases as insurance against more income risk

• Note VT�1(x) is sum of concave functions hence concave and by
envelope theorem

V 000
T�1(x) = �R3

Z
u000(R(x� c) + y0)dF (y0) > 0

Again, value function inherits key properties of utility function
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Backwards induction

• One period even earlier

VT�2(x) = max
c

h
u(c) + �

Z
VT�1(R(x� c) + y0)dF (y0)

i

• Note VT�2(x) is sum of concave functions hence concave and again

V 000
T�2(x) = �R3

Z
V 000
T�1(R(x� c) + y0)dF (y0) > 0

• Iterate all the way back to

V0(x) = max
c

h
u(c) + �

Z
V1(R(x� c) + y0)dF (y0)

i

• At each step of iteration Vt(x) is concave and exhibits prudence
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